A1 Refereed original research article in a scientific journal
Classification of ischemia from myocardial polar maps in 15 O-H 2 O cardiac perfusion imaging using a convolutional neural network
Authors: Teuho Jarmo, Schultz Jussi, Klén Riku, Knuuti Juhani, Saraste Antti, Ono Naoaki, Kanaya Shigehiko
Publisher: NATURE PORTFOLIO
Publication year: 2022
Journal: Scientific Reports
Journal name in source: SCIENTIFIC REPORTS
Journal acronym: SCI REP-UK
Article number: 2839
Volume: 12
Number of pages: 12
ISSN: 2045-2322
eISSN: 2045-2322
DOI: https://doi.org/10.1038/s41598-022-06604-x
Web address : https://doi.org/10.1038/s41598-022-06604-x
Self-archived copy’s web address: https://research.utu.fi/converis/portal/detail/Publication/174961824
We implemented a two-dimensional convolutional neural network (CNN) for classification of polar maps extracted from Carimas (Turku PET Centre, Finland) software used for myocardial perfusion analysis. 138 polar maps from O-15-H2O stress perfusion study in JPEG format from patients classified as ischemic or non-ischemic based on finding obstructive coronary artery disease (CAD) on invasive coronary artery angiography were used. The CNN was evaluated against the clinical interpretation. The classification accuracy was evaluated with: accuracy (ACC), area under the receiver operating characteristic curve (AUC), F1 score (F1S), sensitivity (SEN), specificity (SPE) and precision (PRE). The CNN had a median ACC of 0.8261, AUC of 0.8058, F1S of 0.7647, SEN of 0.6500, SPE of 0.9615 and PRE of 0.9286. In comparison, clinical interpretation had ACC of 0.8696, AUC of 0.8558, F1S of 0.8333, SEN of 0.7500, SPE of 0.9615 and PRE of 0.9375. The CNN classified only 2 cases differently than the clinical interpretation. The clinical interpretation and CNN had similar accuracy in classifying false positives and true negatives. Classification of ischemia is feasible in 15O-H2O stress perfusion imaging using JPEG polar maps alone with a custom CNN and may be useful for the detection of obstructive CAD.
Downloadable publication This is an electronic reprint of the original article. |