Balls in the Triangular Ratio Metric




Hokuni S, Klen R, Li Y, Vuorinen M

Mark L. Agranovsky, Matania Ben-Artzi, Greg Galloway, Lavi Karp, Dmitry Khavinson, Simeon Reich, Gilbert Weinstein, Lawrence Zalcman

International Conference on Complex Analysis and Dynamical Systems

PROVIDENCE, RI

2016

COMPLEX ANALYSIS AND DYNAMICAL SYSTEMS VI, PT 2: COMPLEX ANALYSIS, QUASICONFORMAL MAPPINGS, COMPLEX DYNAMICS

COMPLEX ANALYSIS AND DYNAMICAL SYSTEMS VI, PT 2: COMPLEX ANALYSIS, QUASICONFORMAL MAPPINGS, COMPLEX DYNAMICS

CONTEMP MATH

Contemporary Mathematics

667

105

123

19

978-1-4704-1703-1

978-1-4704-3206-5

0271-4132

DOIhttps://doi.org/10.1090/conm/667/13534

http://www.ams.org/books/conm/667/conm667-endmatter.pdf



We consider the triangular ratio metric and estimate the radius of convexity for balls in some special domains and prove the inclusion relations of metric balls defined by the triangular ratio metric, the quasihyperbolic metric and the j-metric.



Last updated on 2024-26-11 at 17:22