Balls in the Triangular Ratio Metric
: Hokuni S, Klen R, Li Y, Vuorinen M
: Mark L. Agranovsky, Matania Ben-Artzi, Greg Galloway, Lavi Karp, Dmitry Khavinson, Simeon Reich, Gilbert Weinstein, Lawrence Zalcman
: International Conference on Complex Analysis and Dynamical Systems
: PROVIDENCE, RI
: 2016
: COMPLEX ANALYSIS AND DYNAMICAL SYSTEMS VI, PT 2: COMPLEX ANALYSIS, QUASICONFORMAL MAPPINGS, COMPLEX DYNAMICS
: COMPLEX ANALYSIS AND DYNAMICAL SYSTEMS VI, PT 2: COMPLEX ANALYSIS, QUASICONFORMAL MAPPINGS, COMPLEX DYNAMICS
: CONTEMP MATH
: Contemporary Mathematics
: 667
: 105
: 123
: 19
: 978-1-4704-1703-1
: 978-1-4704-3206-5
: 0271-4132
DOI: https://doi.org/10.1090/conm/667/13534
: http://www.ams.org/books/conm/667/conm667-endmatter.pdf
We consider the triangular ratio metric and estimate the radius of convexity for balls in some special domains and prove the inclusion relations of metric balls defined by the triangular ratio metric, the quasihyperbolic metric and the j-metric.