A4 Refereed article in a conference publication
Balls in the Triangular Ratio Metric
Authors: Hokuni S, Klen R, Li Y, Vuorinen M
Editors: Mark L. Agranovsky, Matania Ben-Artzi, Greg Galloway, Lavi Karp, Dmitry Khavinson, Simeon Reich, Gilbert Weinstein, Lawrence Zalcman
Conference name: International Conference on Complex Analysis and Dynamical Systems
Publishing place: PROVIDENCE, RI
Publication year: 2016
Book title : COMPLEX ANALYSIS AND DYNAMICAL SYSTEMS VI, PT 2: COMPLEX ANALYSIS, QUASICONFORMAL MAPPINGS, COMPLEX DYNAMICS
Journal name in source: COMPLEX ANALYSIS AND DYNAMICAL SYSTEMS VI, PT 2: COMPLEX ANALYSIS, QUASICONFORMAL MAPPINGS, COMPLEX DYNAMICS
Journal acronym: CONTEMP MATH
Series title: Contemporary Mathematics
Volume: 667
First page : 105
Last page: 123
Number of pages: 19
ISBN: 978-1-4704-1703-1
eISBN: 978-1-4704-3206-5
ISSN: 0271-4132
DOI: https://doi.org/10.1090/conm/667/13534
Web address : http://www.ams.org/books/conm/667/conm667-endmatter.pdf
We consider the triangular ratio metric and estimate the radius of convexity for balls in some special domains and prove the inclusion relations of metric balls defined by the triangular ratio metric, the quasihyperbolic metric and the j-metric.