A Graph Kernel for Protein-Protein Interaction Extraction




Airola A, Pyysalo S, Björne J, Pahikkala T, Ginter F, Salakoski T

Dina Demner-Fushman, Sophia Ananiadou, K. Bretonnel Cohen, John Pestian, Jun’ichi Tsujii, Bonnie Webber

Workshop on biomedical natural language processing

PublisherAssociation for Computational Linguistics

2008

Proceedings of the Workshop on Current Trends in Biomedical Natural Language Processing (BioNLP 2008)

http://aclweb.org/anthology-new/W/W08/W08-0601.pdf



In  this  paper,   we  propose  a  graph  kernel based  approach  for  the  automated  extraction of protein-protein interactions (PPI) from scientific  literature. In  contrast  to  earlier  approaches to PPI extraction, the introduced all-dependency-paths  kernel  has  the  capability to  consider  full,  general  dependency  graphs. We evaluate the proposed method across five publicly  available  PPI  corpora  providing  the most comprehensive evaluation done for a machine  learning  based  PPI-extraction  system. Our method is shown to achieve state-of-the-art  performance  with  respect  to  comparable evaluations,  achieving 56.4 F-score and 84.8 AUC on the AImed corpus.  Further, we identify several pitfalls that can make evaluations of  PPI-extraction  systems  incomparable,  or even  invalid.   These  include  incorrect  cross-validation  strategies  and  problems  related  to comparing F-score results achieved on different evaluation resources.


Last updated on 2024-26-11 at 15:54