A4 Refereed article in a conference publication 
A Graph Kernel for Protein-Protein Interaction Extraction
Authors: Airola A, Pyysalo S, Björne J, Pahikkala T, Ginter F, Salakoski T
Editors: Dina Demner-Fushman, Sophia Ananiadou, K. Bretonnel Cohen, John Pestian, Jun’ichi Tsujii, Bonnie Webber
Conference name: Workshop on biomedical natural language processing
Publisher: Association for Computational Linguistics
Publication year: 2008
Book title : Proceedings of the Workshop on Current Trends in Biomedical Natural Language Processing (BioNLP 2008)
Web address : http://aclweb.org/anthology-new/W/W08/W08-0601.pdf
In  this  paper,   we  propose  a  graph  kernel based  approach  for  the  automated  extraction of protein-protein interactions (PPI) from scientific  literature. In  contrast  to  earlier  approaches to PPI extraction, the introduced all-dependency-paths  kernel  has  the  capability to  consider  full,  general  dependency  graphs. We evaluate the proposed method across five publicly  available  PPI  corpora  providing  the most comprehensive evaluation done for a machine  learning  based  PPI-extraction  system. Our method is shown to achieve state-of-the-art  performance  with  respect  to  comparable evaluations,  achieving 56.4 F-score and 84.8 AUC on the AImed corpus.  Further, we identify several pitfalls that can make evaluations of  PPI-extraction  systems  incomparable,  or even  invalid.   These  include  incorrect  cross-validation  strategies  and  problems  related  to comparing F-score results achieved on different evaluation resources.
| Downloadable publication  This is an electronic reprint of the original article. | 

