Jukka Heikkonen
Doctor of technology
jukhei@utu.fi ORCID-tunniste: https://orcid.org/0000-0002-2468-5708 |
Data analysis; machine learning; sensor fusion data processing; autonomous systems; computer vision; pattern recognition; GIS data processing; remote sensing
Head of the algorithms and computational intelligence (ACI) research group. See current activities/projects from the Research section below
Jukka Heikkonen has been a professor of computer science of University of Turku, Finland, since 2009. His research as the head of the Algorithms and Computational Intelligent (ACI) research group is related to data analytics, machine learning and autonomous systems. Currently he is focusing on machine learning based data/sensor fusion applied for pattern recognition, situational awareness modelling of autonomous systems, and GIS data analysis in geographical applications. He has worked at top level research laboratories and Center of Excellences in Finland and international organizations (European Commission, Japan) and has led many international and national research projects. He has authored more than 150 scientific articles.
Some examples of current research activities/projects:
Artificial Intelligence based Virtual Control Room for the Arctic (AI-ARC)
1.9.2021 – 31.8.2024, H2020 project
The main objective of the AI-ARC proposal is to create an innovative, robust, efficient, and user-friendly artificial intelligence (AI) based- platform for coast and border guards, which allows traditional and VR-based interfaces to adapt to users’ preferences in terms of information management, anomaly detection, risk analyses and interoperability; in order to realize a comprehensive surveillance system that delivers powerful sensor fusion based situational awareness for decision making, and safety for all maritime actors.
Exploration Information System (EIS)
1.4.2022-31.3.2025, Horizon Europe project
EIS will develop new data analysis methods by applying artificial intelligence, machine learning, deep learning into mineral prospectivity mapping together with new geomodels and mineral systems modelling. Methods developed reduce the current high exploration costs and improve the accuracy of the targeting of the early phase exploration.
Trafficability Prediction and Route Planning for Forest Machines
1.9.2020-31.7.2024, Academy of Finland
The objective of the project is to develop novel machine learning (ML) approach for terrain trafficability prediction for forest machines based on model-data fusion and to develop efficient route planning approaches based on the trafficability forecasts.
Smart terminals (Sea3value SMARTER)
1.1.2021-28.2.2023, Business Finland
UTU is developing data analytics solutions for smart harbour operations. The objective is to add value to stakeholders by improved sharing of information, and by redesigning processes for operational optimisation, improved safety, and optimise people and cargo flow. The ship turnaround use case focuses on optimising ships visits in harbour. The truck traffic use case focuses on developing a predictive real-time traffic situational awareness model to optimise the cargo logistics to and from the port. The passenger flow use case improves the passenger flow on ropax-ports by developing models and solutions to support collective transportation, ride sharing and other mechanisms to relieve the congestion at ports.
MAATI – Soil type estimation
1.8.2021-31.7.2022, Ministry of Agriculture
This project develops machine learning methods for soil type classification for whole Finland. This includes the use of remote sensing datasets (such as Sentinel 1 and 2 satellites), up-to-date open spatial databases for peatlands and nutrient classes (swamp types), land use (forest / field / wetland / peat production) and drainage. The methods are first developed and tested in three pilot areas in Finland: 1) Keminmaa, 2) Etelä-Pohjanmaa, and 3) Itä-Suomi. The research includes the use of classical pattern recognition approaches based on predefined features and feature selection, and also deep learning approaches and their comparisons. The research is done in collaboration with Natural Resource Institute and Geological Survey of Finland.
Compressive Sensing and Machine Learning Techniques for Radar Applications
1.1.2021-31.12.2022, Finnish Defence Forces
The project investigates integration of Compressive Sensing(CS) and machine learning for radar applications improving the speed and applicability of CS techniques using deep net architectures with learned signal priors, while supporting learning in data starved regimes with CS based models. The work at the UTU is related to the detection and classification of targets in Gaussian and Non-Gaussian clutter.
Currently responsible teacher in the following courses:
TKO 3120 Machine Learning and Pattern Recognition
TKO 5328 Erikoistyö
Supervisor in graduation theses (MSc, BSc).
- Towards Real-Time Edge Detection for Event Cameras Based on Lifetime and Dynamic Slicing (2020)
- Advances in Intelligent Systems and Computing
(A4 Vertaisarvioitu artikkeli konferenssijulkaisussa) - Unmanned Aerial Vehicles (UAVs): Collision Avoidance Systems and Approaches (2020)
- IEEE Access
(A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä ) - Use of an IoT Technology to Analyse the Inertial Measurement of Smart Ping-pong Paddle (2020)
- Computer Science and Information TechnologyData Mining and Knowledge Discovery
(A4 Vertaisarvioitu artikkeli konferenssijulkaisussa) - Analysis and Enhancement of Quantum Efficiency for Multi-Junction Solar Cell (2019)
- Conference Record IEEE Photovoltaic Specialists Conference
(A4 Vertaisarvioitu artikkeli konferenssijulkaisussa) - A Survey on Odometry for Autonomous Navigation Systems (2019)
- IEEE Access
(A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä ) - Comparative Analysis of Image Fusion Methods in Marine Environment (2019) 2019 IEEE International Symposium on Robotic and Sensors Environments (ROSE) Fahimeh Farahnakian, Parisa Movahedi, Jussi Poikonen, Eero Lehtonen, Dimitrios Makris, Jukka Heikkonen
(A4 Vertaisarvioitu artikkeli konferenssijulkaisussa) - Deep Convolutional Neural Network-based Fusion of RGB and IR Images in Marine Environment (2019) 2019 IEEE Intelligent Transportation Systems Conference (ITSC) Fahimeh Farahnakian, Jussi Poikonen, Markus Laurinen, Jukka Heikkonen
(A4 Vertaisarvioitu artikkeli konferenssijulkaisussa) - Edge and Fog Computing Enabled AI for IoT-An Overview (2019) 2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS) Zhuo Zou, Yi Jin, Paavo Nevalainen, Yuxiang Huan, Jukka Heikkonen, Tomi Westerlund
(A4 Vertaisarvioitu artikkeli konferenssijulkaisussa) - Educational Approach to the Internet of Things (IoT) Concepts and Applications (2019)
- Computer Science and Information Technology
(A4 Vertaisarvioitu artikkeli konferenssijulkaisussa) - Formation Maintenance and Collision Avoidance in a Swarm of Drones (2019) ISCSIC 2019: 2019 3rd International Symposium on Computer Science and Intelligent Control Yasin J.N., Haghbayan M.H., Heikkonen J., Tenhunen H., Plosila J.
(A4 Vertaisarvioitu artikkeli konferenssijulkaisussa) - Innovative and Efficient Teaching Methodology for Digital Communication Systems using an e-Learning Platform (2019)
- Journal of Communications
(A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä ) - Numerical Investigations on the Type-II Band Alignment and Quantum Efficiency of Multijunction Solar Cell using Anderson’s Rule (2019) Proceedings of International Conference on Sustainable Energy and Environmental Challenges Ankul Prajapati, Jatin Kumar Chaudhary, Rajeev Kanth, Jukka-Pekka Skön, Jukka Heikkonen
(O2 Muu julkaisu ) - Optimization of Silicon Tandem Solar Cells Using Artificial Neural Networks (2019)
- Lecture Notes in Computer Science
(A4 Vertaisarvioitu artikkeli konferenssijulkaisussa) - Potentials of big data for integrated territorial policy development in the European growth corridors (Big Data & EGC)
– Steps towards data-driven corridor governance. Targeted Analysis. Practical Guide. (2019) Helka Kalliomäki, Ira Ahokas, Nicolas Balcom Raleigh, Jukka Heikkonen, Pekko Lindblom, Paavo Nevalainen, Ville Keränen, Siiri Silm, Anto Aasa
(D4 Julkaistu kehittämis- tai tutkimusraportti tai -selvitys ) - Potentials of big data for integrated territorial policy development in the European growth corridors (Big Data & EGC). Targeted Analysis. Executive Summary (2019) Helka Kalliomäki, Ira Ahokas, Nicolas Balcom Raleigh, Jukka Heikkonen, Pekko Lindblom, Paavo Nevalainen, Ville Keränen, Siiri Silm, Anto Aasa
(D4 Julkaistu kehittämis- tai tutkimusraportti tai -selvitys ) - Potentials of big data for integrated territorial policy development in the European growth corridors (Big Data & EGC). Targeted Analysis. Synthesis Report (2019) Helka Kalliomäki, Ira Ahokas, Nicolas Balcom Raleigh, Jukka Heikkonen, Pekko Lindblom, Paavo Nevalainen, Ville Keränen, Siiri Silm, Anto Aasa
(D4 Julkaistu kehittämis- tai tutkimusraportti tai -selvitys ) - Potentials of Big Data for Integrated Territorial Policy Development in the European Growth Corridors (Bigdata): Targeted Analysis. Final Main Report (2019) Helka Kalliomäki, Jukka Vahlo, Ira Ahokas, Nicolas Balcom Raleigh, Jukka Heikkonen, Pekko Lindblom, Ville Keränen, Paavo Nevalainen, Siiri Silm, Anto Aasa
(D4 Julkaistu kehittämis- tai tutkimusraportti tai -selvitys ) - The spatial leave-pair-out cross-validation method for reliable AUC estimation of spatial classifiers (2019)
(A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä ) - Visible and Infrared Image Fusion Framework based on RetinaNet for Marine Environment (2019) 2019 22th International Conference on Information Fusion (FUSION) Farahnakian Fahimeh, Poikkonen Jussi, Laurinen Markus, Markis Dimitrios, Heikkonen Jukka
(A4 Vertaisarvioitu artikkeli konferenssijulkaisussa) - A Deep Auto-Encoder based Approach for Intrusion Detection System (2018) 2018 20th International Conference on Advanced Communication Technology (ICACT) Fatimeh Farahnakian, Jukka Heikkonen
(A4 Vertaisarvioitu artikkeli konferenssijulkaisussa)