A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
New fractional integral inequalities for preinvex functions involving Caputo-Fabrizio operator
Tekijät: Tariq Muhammaed, Ahmad Hijaz, Shaikh Abdul Ghafoor, Sahoo Soubhagya Kumar, Khedher Khaled Mohamed, Gia Tuan Nguyen
Kustantaja: AMER INST MATHEMATICAL SCIENCES-AIMS
Julkaisuvuosi: 2021
Journal: AIMS Mathematics
Tietokannassa oleva lehden nimi: AIMS MATHEMATICS
Lehden akronyymi: AIMS MATH
Vuosikerta: 7
Numero: 3
Aloitussivu: 3440
Lopetussivu: 3455
Sivujen määrä: 16
DOI: https://doi.org/10.3934/math.2022191
Rinnakkaistallenteen osoite: https://research.utu.fi/converis/portal/detail/Publication/68549321
It's undeniably true that fractional calculus has been the focus point for numerous researchers in recent couple of years. The writing of the Caputo-Fabrizio fractional operator has been on many demonstrating and real-life issues. The main objective of our article is to improve integral inequalities of Hermite-Hadamard and Pachpatte type incorporating the concept of preinvexity with the Caputo-Fabrizio fractional integral operator. To further enhance the recently presented notion, we establish a new fractional equality for differentiable preinvex functions. Then employing this as an auxiliary result, some refinements of the Hermite-Hadamard type inequality are presented. Also, some applications to special means of our main findings are presented.
Ladattava julkaisu This is an electronic reprint of the original article. |