A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

New fractional integral inequalities for preinvex functions involving Caputo-Fabrizio operator




TekijätTariq Muhammaed, Ahmad Hijaz, Shaikh Abdul Ghafoor, Sahoo Soubhagya Kumar, Khedher Khaled Mohamed, Gia Tuan Nguyen

KustantajaAMER INST MATHEMATICAL SCIENCES-AIMS

Julkaisuvuosi2021

JournalAIMS Mathematics

Tietokannassa oleva lehden nimiAIMS MATHEMATICS

Lehden akronyymiAIMS MATH

Vuosikerta7

Numero3

Aloitussivu3440

Lopetussivu3455

Sivujen määrä16

DOIhttps://doi.org/10.3934/math.2022191

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/68549321


Tiivistelmä
It's undeniably true that fractional calculus has been the focus point for numerous researchers in recent couple of years. The writing of the Caputo-Fabrizio fractional operator has been on many demonstrating and real-life issues. The main objective of our article is to improve integral inequalities of Hermite-Hadamard and Pachpatte type incorporating the concept of preinvexity with the Caputo-Fabrizio fractional integral operator. To further enhance the recently presented notion, we establish a new fractional equality for differentiable preinvex functions. Then employing this as an auxiliary result, some refinements of the Hermite-Hadamard type inequality are presented. Also, some applications to special means of our main findings are presented.

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 10:58