A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Recession forecasting with high-dimensional data




TekijätNevasalmi Lauri

KustantajaWILEY

Julkaisuvuosi2022

JournalJournal of Forecasting

Tietokannassa oleva lehden nimiJOURNAL OF FORECASTING

Lehden akronyymiJ FORECASTING

Sivujen määrä13

ISSN0277-6693

eISSN1099-131X

DOIhttps://doi.org/10.1002/for.2823

Verkko-osoitehttps://doi.org/10.1002/for.2823

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/67835244


Tiivistelmä
In this paper, a large amount of different financial and macroeconomic variables are used to predict the U.S. recession periods. We propose a new cost-sensitive extension to the gradient boosting model, which can take into account the class imbalance problem of the binary response variable. The class imbalance, caused by the scarcity of recession periods in our application, is a problem that is emphasized with high-dimensional datasets. Our empirical results show that the introduced cost-sensitive extension outperforms the traditional gradient boosting model in both in-sample and out-of-sample forecasting. Among the large set of candidate predictors, different types of interest rate spreads turn out to be the most important predictors when forecasting U.S. recession periods.

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 21:16