Quantitative genome-scale metabolic modeling of human CD4+ T cell differentiation reveals subset-specific regulation of glycosphingolipid pathways




Partho Sen, Syed Bilal Ahmad Andrabi, Tanja Buchacher, Mohd Moin Khan, Ubaid Ullah Kalim, Tuomas Mikael Lindeman, Marina Amaral Alves, Victoria Hinkkanen, Esko Kemppainen, Alex M Dickens, Omid Rasool, Tuulia Hyötyläinen, Riitta Lahesmaa, Matej Orešič

PublisherCell press

Turku

2021

Cell Reports

Cell reports

Cell Reports

37

6

109973

2211-1247

DOIhttps://doi.org/10.1016/j.celrep.2021.109973

https://www.sciencedirect.com/science/article/pii/S2211124721014522

https://research.utu.fi/converis/portal/detail/Publication/67707367



T cell activation, proliferation, and differentiation involve metabolic reprogramming resulting from the interplay of genes, proteins, and metabolites. Here, we aim to understand the metabolic pathways involved in the activation and functional differentiation of human CD4+ T cell subsets (T helper [Th]1, Th2, Th17, and induced regulatory T [iTreg] cells). Here, we combine genome-scale metabolic modeling, gene expression data, and targeted and non-targeted lipidomics experiments, together with in vitro gene knockdown experiments, and show that human CD4+ T cells undergo specific metabolic changes during activation and functional differentiation. In addition, we confirm the importance of ceramide and glycosphingolipid biosynthesis pathways in Th17 differentiation and effector functions. Through in vitro gene knockdown experiments, we substantiate the requirement of serine palmitoyltransferase (SPT), a de novo sphingolipid pathway in the expression of proinflammatory cytokines (interleukin [IL]-17A and IL17F) by Th17 cells. Our findings provide a comprehensive resource for selective manipulation of CD4+ T cells under disease conditions characterized by an imbalance of Th17/natural Treg (nTreg) cells.


Last updated on 2024-26-11 at 22:33