Von neumann regularity, split epicness and elementary cellular automata




Salo Ville

Castillo-Ramirez Alonso, Guillon Pierre, Perrot Kévin

International Workshop on Cellular Automata and Discrete Complex Systems

PublisherSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing

2021

Open Access Series in Informatics

27th IFIP WG 1.5 International Workshop on Cellular Automata and Discrete Complex Systems (AUTOMATA 2021)

OpenAccess Series in Informatics

Open access series in informatics

90

11:1

11:10

978-3-95977-189-4

2190-6807

DOIhttps://doi.org/10.4230/OASIcs.AUTOMATA.2021.11

https://drops.dagstuhl.de/opus/volltexte/2021/14020/

https://research.utu.fi/converis/portal/detail/Publication/67640097



We show that a cellular automaton on a mixing subshift of finite type is a von Neumann regular element in the semigroup of cellular automata if and only if it is split epic onto its image in the category of sofic shifts and block maps. It follows from [S.-Törmä, 2015] that von Neumann regularity is decidable condition, and we decide it for all elementary CA.


Last updated on 2024-26-11 at 16:06