A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Universal gates with wires in a row




TekijätSalo Ville

KustantajaSpringer

Julkaisuvuosi2022

JournalJournal of Algebraic Combinatorics

Lehden akronyymiJ ALGEBR COMB

Vuosikerta55

Numero2

Aloitussivu335

Lopetussivu353

Sivujen määrä19

ISSN0925-9899

eISSN1572-9192

DOIhttps://doi.org/10.1007/s10801-021-01053-7

Verkko-osoitehttps://link.springer.com/article/10.1007%2Fs10801-021-01053-7

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/67531805


Tiivistelmä
We give some optimal size generating sets for the group generated by shifts and local permutations on the binary full shift. We show that a single generator, namely the fully asynchronous application of the elementary cellular automaton 57 (or, by symmetry, ECA 99), suffices in addition to the shift. In the terminology of logical gates, we have a single reversible gate whose shifts generate all (finitary) reversible gates on infinitely many binary-valued wires that lie in a row and cannot (a priori) be rearranged. We classify pairs of words u, v such that the gate swapping these two words, together with the shift and the bit flip, generates all local permutations. As a corollary, we obtain analogous results in the case where the wires are arranged on a cycle, confirming a conjecture of Macauley-McCammond-Mortveit and Vielhaber.

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 21:04