O2 Muu julkaisu

Singmaster’s conjecture in the interior of Pascal’s triangle




TekijätMatomäki Kaisa

Konferenssin vakiintunut nimiRussian-Finnish Symposium on Discrete Mathematics

KustantajaTurku Centre for Computer Science

KustannuspaikkaTurku

Julkaisuvuosi2021

Kokoomateoksen nimiProceedings of the Sixth Russian-Finnish Symposium on Discrete Mathematics

Sarjan nimiTUCS Lecture Notes

Numero sarjassa31

Aloitussivu23

Lopetussivu23

ISBN978-952-12-4113-0

ISSN1797-8831

Verkko-osoitehttp://urn.fi/URN:ISBN:978-952-12-4113-0


Tiivistelmä

In 1971, David Singmaster conjectured that any natural number greater than one only appears in Pascal’s triangle a bounded number of times. In the talk I will discuss what is known about this conjecture, concentrating on a recent result in joint work with Maksym Radziwill, Xuancheng Shao, Terence Tao, and Joni Ter¨av¨ainen that establishes the conjecture in the interior region of the triangle. While the problem is combinatorial, we use number theoretic and analytic tools. In particular an important analytic input in our proof is Vinogradov’s estimate for exponential sums over primes



Last updated on 2024-26-11 at 18:25