O2 Muu julkaisu
Singmaster’s conjecture in the interior of Pascal’s triangle
Tekijät: Matomäki Kaisa
Konferenssin vakiintunut nimi: Russian-Finnish Symposium on Discrete Mathematics
Kustantaja: Turku Centre for Computer Science
Kustannuspaikka: Turku
Julkaisuvuosi: 2021
Kokoomateoksen nimi: Proceedings of the Sixth Russian-Finnish Symposium on Discrete Mathematics
Sarjan nimi: TUCS Lecture Notes
Numero sarjassa: 31
Aloitussivu: 23
Lopetussivu: 23
ISBN: 978-952-12-4113-0
ISSN: 1797-8831
Verkko-osoite: http://urn.fi/URN:ISBN:978-952-12-4113-0
In 1971, David Singmaster conjectured that any natural number greater than one only appears in Pascal’s triangle a bounded number of times. In the talk I will discuss what is known about this conjecture, concentrating on a recent result in joint work with Maksym Radziwill, Xuancheng Shao, Terence Tao, and Joni Ter¨av¨ainen that establishes the conjecture in the interior region of the triangle. While the problem is combinatorial, we use number theoretic and analytic tools. In particular an important analytic input in our proof is Vinogradov’s estimate for exponential sums over primes