O2 Muu julkaisu
Aspects of stability in multiobjective integer linear programming problem with objective partitioning
Tekijät: Nikulin Yury, Emelichev Vladimir
Toimittaja: A. Hakanen | V. Halava | P. Herva | J. Kari |
T. Laihonen | I. Petre | A. Saarela (Eds).
Konferenssin vakiintunut nimi: Russian-Finnish Symposium on Discrete Mathematics
Kustantaja: Turku Centre for Computer Science
Kustannuspaikka: Turku
Julkaisuvuosi: 2021
Kokoomateoksen nimi: Proceedings of the Sixth Russian-Finnish Symposium on Discrete Mathematics
Sarjan nimi: TUCS Lecture Notes
Numero sarjassa: 31
Aloitussivu: 107
Lopetussivu: 117
ISBN: 978-952-12-4113-0
ISSN: 1797-8831
Verkko-osoite: http://urn.fi/URN:ISBN:978-952-12-4113-0
In a multiobjective problem of integer linear programming, parametrization of optimality principle is introduced by dividing a set of objectives into a family of disjoint subsets. The introduction of this principle makes it possible to connect two classical optimality sets, namely, extreme and Pareto. The admissible independent perturbations in such a problem are formed by a set of additive matrices, with arbitrary H¨older’s norms specified in the solution and criterion spaces. The lower and upper bounds for the radius of stability are obtained. The main result is complemented with several important corollaries.