O2 Muu

Aspects of stability in multiobjective integer linear programming problem with objective partitioning

Julkaisun tekijät: Nikulin Yury, Emelichev Vladimir

Konferenssin vakiintunut nimi: Russian-Finnish Symposium on Discrete Mathematics

Kustantaja: Turku Centre for Computer Science

Paikka: Turku

Julkaisuvuosi: 2021

Kirjan nimi *: Proceedings of the Sixth Russian-Finnish Symposium on Discrete Mathematics

Sarjan nimi: TUCS Lecture Notes

Numero sarjassa: 31

ISBN: 978-952-12-4113-0

ISSN: 1797-8831

Verkko-osoite: http://urn.fi/URN:ISBN:978-952-12-4113-0


In a multiobjective problem of integer linear programming, parametrization of optimality principle is introduced by dividing a set of objectives into a family of disjoint subsets. The introduction of this principle makes it possible to connect two classical optimality sets, namely, extreme and Pareto. The admissible independent perturbations in such a problem are formed by a set of additive matrices, with arbitrary H¨older’s norms specified in the solution and criterion spaces. The lower and upper bounds for the radius of stability are obtained. The main result is complemented with several important corollaries.

Last updated on 2021-21-10 at 13:32