A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
On the domino problem of the Baumslag-Solitar groups
Tekijät: Aubrun Nathalie, Kari Jarkko
Kustantaja: Elsevier B.V.
Julkaisuvuosi: 2021
Journal: Theoretical Computer Science
Tietokannassa oleva lehden nimi: Theoretical Computer Science
ISSN: 0304-3975
eISSN: 1879-2294
DOI: https://doi.org/10.1016/j.tcs.2021.09.002
Verkko-osoite: https://www.sciencedirect.com/science/article/pii/S030439752100517X
Rinnakkaistallenteen osoite: https://research.utu.fi/converis/portal/detail/Publication/67432172
In [1] we construct aperiodic tile sets on the Baumslag-Solitar groups BS(m, n). Aperiodicity plays a central role in the undecidability of the classical domino problem on Z2, and analogously to this we state as a corollary of the main construction that the Domino problem is undecidable on all Baumslag-Solitar groups. In the present work we elaborate on the claim and provide a full proof of this fact. We also provide details of another result reported in [1]: there are tiles that tile the Baumslag-Solitar group BS(m, n)but none of the valid tilings is recursive. The proofs are based on simulating piecewise affine functions by tiles on BS(m, n).
Ladattava julkaisu This is an electronic reprint of the original article. |