A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

On the domino problem of the Baumslag-Solitar groups




TekijätAubrun Nathalie, Kari Jarkko

KustantajaElsevier B.V.

Julkaisuvuosi2021

JournalTheoretical Computer Science

Tietokannassa oleva lehden nimiTheoretical Computer Science

ISSN0304-3975

eISSN1879-2294

DOIhttps://doi.org/10.1016/j.tcs.2021.09.002

Verkko-osoitehttps://www.sciencedirect.com/science/article/pii/S030439752100517X

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/67432172


Tiivistelmä

In [1] we construct aperiodic tile sets on the Baumslag-Solitar groups BS(m, n). Aperiodicity plays a central role in the undecidability of the classical domino problem on Z2, and analogously to this we state as a corollary of the main construction that the Domino problem is undecidable on all Baumslag-Solitar groups. In the present work we elaborate on the claim and provide a full proof of this fact. We also provide details of another result reported in [1]: there are tiles that tile the Baumslag-Solitar group BS(m, n)but none of the valid tilings is recursive. The proofs are based on simulating piecewise affine functions by tiles on BS(m, n).


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 23:21