A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Asymptotic and bootstrap tests for subspace dimension




TekijätNordhausen Klaus, Oja Hannu, Tyler David E.

KustantajaAcademic Press Inc.

Julkaisuvuosi2022

JournalJournal of Multivariate Analysis

Tietokannassa oleva lehden nimiJournal of Multivariate Analysis

Artikkelin numero104830

Vuosikerta188

eISSN1095-7243

DOIhttps://doi.org/10.1016/j.jmva.2021.104830

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/67390570


Tiivistelmä

Abstract

Many linear dimension reduction methods proposed in the literature can be formulated using an appropriate pair of scatter matrices. The eigen-decomposition of one scatter matrix with respect to another is then often used to determine the dimension of the signal subspace and to separate signal and noise parts of the data. Three popular dimension reduction methods, namely principal component analysis (PCA), fourth order blind identification (FOBI) and sliced inverse regression (SIR) are considered in detail and the first two moments of subsets of the eigenvalues are used to test for the dimension of the signal space. The limiting null distributions of the test statistics are discussed and novel bootstrap strategies are suggested for the small sample cases. In all three cases, consistent test-based estimates of the signal subspace dimension are introduced as well. The asymptotic and bootstrap tests are illustrated in real data examples.


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 14:37