A4 Vertaisarvioitu artikkeli konferenssijulkaisussa

Quantum reservoir computing in bosonic networks




TekijätMujal Pere, Nokkala Johannes, Martínez-Peña Rodrigo, García-Beni Jorge, Giorgi Gian Luca, Soriano Miguel C., Zambrini Roberta

ToimittajaGiovanni Volpe, Joana B. Pereira, Daniel Brunner, Aydogan Ozcan

Konferenssin vakiintunut nimiSPIE Nanoscience + Engineering

KustannuspaikkaBellingham, Washington

Julkaisuvuosi2021

JournalProceedings of SPIE : the International Society for Optical Engineering

Kokoomateoksen nimiEmerging Topics in Artificial Intelligence (ETAI) 2021

Sarjan nimiProceedings of SPIE

Vuosikerta11804

Aloitussivu118041J

ISSN0277-786X

DOIhttps://doi.org/10.1117/12.2596177

Verkko-osoitehttps://doi.org/10.1117/12.2596177

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/67228744


Tiivistelmä

Quantum reservoir computing is an unconventional computing approach that exploits the quantumness of physical systems used as reservoirs to process information, combined with an easy training strategy. An overview is presented about a range of possibilities including quantum inputs, quantum physical substrates and quantum tasks. Recently, the framework of quantum reservoir computing has been proposed using Gaussian quantum states that can be realized e.g. in linear quantum optical systems. The universality and versatility of the system makes it particularly interesting for optical implementations. In particular, full potential of the proposed model can be reached even by encoding into quantum fluctuations, such as squeezed vacuum, instead of classical intense fields or thermal fluctuations. Some examples of the performance of this linear quantum reservoir in temporal tasks are reported.


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 17:32