A4 Vertaisarvioitu artikkeli konferenssijulkaisussa
Quantum reservoir computing in bosonic networks
Tekijät: Mujal Pere, Nokkala Johannes, Martínez-Peña Rodrigo, García-Beni Jorge, Giorgi Gian Luca, Soriano Miguel C., Zambrini Roberta
Toimittaja: Giovanni Volpe, Joana B. Pereira, Daniel Brunner, Aydogan Ozcan
Konferenssin vakiintunut nimi: SPIE Nanoscience + Engineering
Kustannuspaikka: Bellingham, Washington
Julkaisuvuosi: 2021
Journal: Proceedings of SPIE : the International Society for Optical Engineering
Kokoomateoksen nimi: Emerging Topics in Artificial Intelligence (ETAI) 2021
Sarjan nimi: Proceedings of SPIE
Vuosikerta: 11804
Aloitussivu: 118041J
ISSN: 0277-786X
DOI: https://doi.org/10.1117/12.2596177
Verkko-osoite: https://doi.org/10.1117/12.2596177
Rinnakkaistallenteen osoite: https://research.utu.fi/converis/portal/detail/Publication/67228744
Quantum reservoir computing is an unconventional computing approach that exploits the quantumness of physical systems used as reservoirs to process information, combined with an easy training strategy. An overview is presented about a range of possibilities including quantum inputs, quantum physical substrates and quantum tasks. Recently, the framework of quantum reservoir computing has been proposed using Gaussian quantum states that can be realized e.g. in linear quantum optical systems. The universality and versatility of the system makes it particularly interesting for optical implementations. In particular, full potential of the proposed model can be reached even by encoding into quantum fluctuations, such as squeezed vacuum, instead of classical intense fields or thermal fluctuations. Some examples of the performance of this linear quantum reservoir in temporal tasks are reported.
Ladattava julkaisu This is an electronic reprint of the original article. |