A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Heterogeneity and Classification of Recent Onset Psychosis and Depression: A Multimodal Machine Learning Approach




TekijätLalousis Paris Alexandros, Wood Stephen J.,Schmaal Lianne, Chisholm Katharine, Griffiths Sian Lowri, Reniers Renate L. E. P., Bertolino Alessandro, Borgwardt Stefan, Brambilla Paolo, Kambeitz Joseph, Lencer Rebekka, Pantelis Christos, Ruhrmann Stephan, Salokangas Raimo K. R., Schultze-Lutter Frauke, Bonivento Carolina, Dwyer Dominic,Ferro Adele, Haidl Theresa, Rosen Marlene, Schmidt Andre, Meisenzahl Eva, Koutsouleris Nikolaos, Upthegrove Rachel, CA PRONIA Consortium

KustantajaOXFORD UNIV PRESS

KustannuspaikkaOxford

Julkaisuvuosi2021

JournalSchizophrenia Bulletin

Tietokannassa oleva lehden nimiSCHIZOPHRENIA BULLETIN

Lehden akronyymiSCHIZOPHRENIA BULL

Vuosikerta47

Aloitussivu1130

Lopetussivu1140

Sivujen määrä11

ISSN0586-7614

eISSN1745-1701

DOIhttps://doi.org/10.1093/schbul/sbaa185

Verkko-osoitehttps://doi.org/10.1093/schbul/sbaa185

Rinnakkaistallenteen osoitehttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8266654/


Tiivistelmä
Diagnostic heterogeneity within and across psychotic and affective disorders challenges accurate treatment selection, particularly in the early stages. Delineation of shared and distinct illness features at the phenotypic and brain levels may inform the development of more precise differential diagnostic tools. We aimed to identify prototypes of depression and psychosis to investigate their heterogeneity, with common, comorbid transdiagnostic symptoms. Analyzing clinical/neurocognitive and grey matter volume (GMV) data from the PRONIA database, we generated prototypic models of recent-onset depression (ROD) vs. recent-onset psychosis (ROP) by training support-vector machines to separate patients with ROD from patients with ROP, who were selected for absent comorbid features (pure groups). Then, models were applied to patients with comorbidity, ie, ROP with depressive symptoms (ROP+D) and ROD participants with sub-threshold psychosis-like features (ROD+P), to measure their positions within the affective-psychotic continuum. All models were independently validated in a replication sample. Comorbid patients were positioned between pure groups, with ROP+D patients being more frequently classified as ROD compared to pure ROP patients (clinical/neurocognitive model: chi 2 = 14.874; P < .001; GMV model: chi 2 = 4.933; P = .026). ROD+P patient classification did not differ from ROD (clinical/neurocognitive model: chi 2 = 1.956; P = 0.162; GMV model: chi 2 = 0.005; P = .943). Clinical/neurocognitive and neuroanatomical models demonstrated separability of prototypic depression from psychosis. The shift of comorbid patients toward the depression prototype, observed at the clinical and biological levels, suggests that psychosis with affective comorbidity aligns more strongly to depressive rather than psychotic disease processes. Future studies should assess how these quantitative measures of comorbidity predict outcomes and individual responses to stratified therapeutic interventions.



Last updated on 2024-26-11 at 20:08