Light-curve classification with recurrent neural networks for GOTO: dealing with imbalanced data




Burhanudin UF, Maund JR, Killestein T, Ackley K, Dyer MJ, Lyman J, Ulaczyk K, Cutter R, Mong YL, Steeghs D, Galloway DK, Dhillon V, O'Brien P, Ramsay G, Noysena K, Kotak R, Breton RP, Nuttall L, Palle E, Pollacco D, Thrane E, Awiphan S, Chote P, Chrimes A, Daw E, Duffy C, Eyles-Ferris R, Gompertz B, Heikkila T, Irawati P, Kennedy MR, Levan A, Littlefair S, Makrygianni L, Mata-Sanchez D, Mattila S, McCormac J, Mkrtichian D, Mullaney J, Sawangwit U, Stanway E, Starling R, Strom P, Tooke S, Wiersema K

PublisherOXFORD UNIV PRESS

2021

Monthly Notices of the Royal Astronomical Society

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY

MON NOT R ASTRON SOC

505

3

4345

4361

17

0035-8711

1365-2966

DOIhttps://doi.org/10.1093/mnras/stab1545

https://doi.org/10.1093/mnras/stab1545

https://research.utu.fi/converis/portal/detail/Publication/66927242



The advent of wide-field sky surveys has led to the growth of transient and variable source discoveries. The data deluge produced by these surveys has necessitated the use of machine learning (ML) and deep learning (DL) algorithms to sift through the vast incoming data stream. A problem that arises in real-world applications of learning algorithms for classification is imbalanced data, where a class of objects within the data is underrepresented, leading to a bias for overrepresented classes in the ML and DL classifiers. We present a recurrent neural network (RNN) classifier that takes in photometric time-series data and additional contextual information (such as distance to nearby galaxies and on-sky position) to produce real-time classification of objects observed by the Gravitational-wave Optical Transient Observer, and use an algorithm-level approach for handling imbalance with a focal loss function. The classifier is able to achieve an Area Under the Curve (AUC) score of 0.972 when using all available photometric observations to classify variable stars, supernovae, and active galactic nuclei. The RNN architecture allows us to classify incomplete light curves, and measure how performance improves as more observations are included. We also investigate the role that contextual information plays in producing reliable object classification.

Last updated on 2024-26-11 at 21:29