Electrodiffusion Phenomena in Neuroscience and the Nernst–Planck–Poisson Equations




Jasielec Jerzy J.

PublisherMDPI

Basel

2021

Electrochem

Electrochem

2

2

197

215

DOIhttps://doi.org/10.3390/electrochem2020014

https://www.mdpi.com/2673-3293/2/2/14

https://research.utu.fi/converis/portal/detail/Publication/66858943



This work is aimed to give an electrochemical insight into the ionic transport phenomena in the cellular environment of organized brain tissue. The Nernst–Planck–Poisson (NPP) model is presented, and its applications in the description of electrodiffusion phenomena relevant in nanoscale neurophysiology are reviewed. These phenomena include: the signal propagation in neurons, the liquid junction potential in extracellular space, electrochemical transport in ion channels, the electrical potential distortions invisible to patch-clamp technique, and calcium transport through mitochondrial membrane. The limitations, as well as the extensions of the NPP model that allow us to overcome these limitations, are also discussed. View Full-Text

Keywords: electrodiffusionNernst–Planck–Poissonneuroscienceneuronsliquid junction potentialionic channelspatch-clamp


Last updated on 2024-26-11 at 22:34