A1 Refereed original research article in a scientific journal
Crowdsourced mapping of unexplored target space of kinase inhibitors
Authors: Cichońska Anna, Ravikumar Balaguru, Allaway Robert J., Wan Fangping, Park Sungjoon, Isayev Olexandr, Li Shuya, Mason Michael, Lamb Andrew, Tanoli Ziaurrehman, Jeon Minji, Kim Sunkyu, Popova Mariya, Capuzzi Stephen, Zeng Jianyang, Dang Kristen, Koytiger Gregory, Kang Jaewoo, Wells Carrow I., Willson Timothy M.; The IDG-DREAM Drug-Kinase Binding Prediction Challenge Consortium, Oprea Tudor I., Schlessinger Avner, Drewry David H., Stolovitzky Gustavo, Wennerberg Krister, Guinney Justin, Aittokallio Tero
Publisher: NATURE RESEARCH
Publication year: 2021
Journal: Nature Communications
Journal name in source: NATURE COMMUNICATIONS
Journal acronym: NAT COMMUN
Article number: ARTN 3307
Volume: 12
Issue: 1
Number of pages: 18
ISSN: 2041-1723
eISSN: 2041-1723
DOI: https://doi.org/10.1038/s41467-021-23165-1
Web address : https://www.nature.com/articles/s41467-021-23165-1
Self-archived copy’s web address: https://research.utu.fi/converis/portal/detail/Publication/66381636
Despite decades of intensive search for compounds that modulate the activity of particular protein targets, a large proportion of the human kinome remains as yet undrugged. Effective approaches are therefore required to map the massive space of unexplored compound-kinase interactions for novel and potent activities. Here, we carry out a crowdsourced benchmarking of predictive algorithms for kinase inhibitor potencies across multiple kinase families tested on unpublished bioactivity data. We find the top-performing predictions are based on various models, including kernel learning, gradient boosting and deep learning, and their ensemble leads to a predictive accuracy exceeding that of single-dose kinase activity assays. We design experiments based on the model predictions and identify unexpected activities even for under-studied kinases, thereby accelerating experimental mapping efforts. The open-source prediction algorithms together with the bioactivities between 95 compounds and 295 kinases provide a resource for benchmarking prediction algorithms and for extending the druggable kinome. The IDG-DREAM Challenge carried out crowdsourced benchmarking of predictive algorithms for kinase inhibitor activities on unpublished data. This study provides a resource to compare emerging algorithms and prioritize new kinase activities to accelerate drug discovery and repurposing efforts.
Downloadable publication This is an electronic reprint of the original article. |