A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

A customized genetic algorithm for bi-objective routing in a dynamic network




TekijätMaskooki Alaleh, Deb Kalyanmoy, Kallio Markku

KustantajaElsevier

Julkaisuvuosi2022

JournalEuropean Journal of Operational Research

Vuosikerta297

Numero2

Aloitussivu615

Lopetussivu629

eISSN1872-6860

DOIhttps://doi.org/10.1016/j.ejor.2021.05.018

Verkko-osoitehttps://www.sciencedirect.com/science/article/pii/S037722172100432X

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/59071488


Tiivistelmä

The article presents a proposed customized genetic algorithm ( CGA ) to find the Pareto frontier for a bi-objective integer linear programming (ILP) model of routing in a dynamic network, where the number of nodes and edge weights vary over time. Utilizing a hybrid method, the CGA combines a genetic algorithm with dynamic programming (DP); it is a fast alternative to an ILP solver for finding efficient solutions, particularly for large dimensions. A non-dominated sorting genetic algorithm (NSGA-II) is used as a base multi-objective evolutionary algorithm. Real data are used for target trajectories, from a case study of application of a surveillance boat to measure greenhouse-gas emissions of ships on the Baltic sea. The CGA's performance is evaluated in comparison to ILP solutions in terms of accuracy and computation efficiency. Results over multiple runs indicate convergence to the efficient frontier, with a considerable computation speed-up relative to the ILP solver. The study stays as a model for hybridizing evolutionary optimization and DP methods together in solving complex real-world problems.


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 20:24