A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
Isoperimetric properties of condenser capacity
Tekijät: Nasser Mohamed M.S., Vuorinen Matti
Kustantaja: ACADEMIC PRESS INC ELSEVIER SCIENCE
Julkaisuvuosi: 2021
Journal: Journal of Mathematical Analysis and Applications
Lehden akronyymi: J MATH ANAL APPL
Artikkelin numero: ARTN 125050
Vuosikerta: 499
Numero: 1
Sivujen määrä: 25
ISSN: 0022-247X
eISSN: 1096-0813
DOI: https://doi.org/10.1016/j.jmaa.2021.125050
Rinnakkaistallenteen osoite: https://research.utu.fi/converis/portal/detail/Publication/55225370
Tiivistelmä
For compact subsets E of the unit disk D we study the capacity of the condenser (D, E) by means of set functionals defined in terms of hyperbolic geometry. In particular, we study experimentally the case of a hyperbolic triangle and arrive at the conjecture that of all triangles with the same hyperbolic area, the equilateral triangle has the least capacity.
For compact subsets E of the unit disk D we study the capacity of the condenser (D, E) by means of set functionals defined in terms of hyperbolic geometry. In particular, we study experimentally the case of a hyperbolic triangle and arrive at the conjecture that of all triangles with the same hyperbolic area, the equilateral triangle has the least capacity.
Ladattava julkaisu This is an electronic reprint of the original article. |