A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
On the variance of squarefree integers in short intervals and arithmetic progressions
Tekijät: Gorodetsky Ofir, Matomäki Kaisa, Radziwill Maksym, Rodgers Brad
Kustantaja: SPRINGER BASEL AG
Julkaisuvuosi: 2021
Journal: Geometric And Functional Analysis
Tietokannassa oleva lehden nimi: GEOMETRIC AND FUNCTIONAL ANALYSIS
Lehden akronyymi: GEOM FUNCT ANAL
Vuosikerta: 31
Numero: 1
Aloitussivu: 111
Lopetussivu: 149
Sivujen määrä: 39
ISSN: 1016-443X
eISSN: 1420-8970
DOI: https://doi.org/10.1007/s00039-021-00557-5
Rinnakkaistallenteen osoite: https://research.utu.fi/converis/portal/detail/Publication/54379555
We evaluate asymptotically the variance of the number of squarefree integers up to x in short intervals of length H < x(6/11-epsilon) and the variance of the number of squarefree integers up to x in arithmetic progressions modulo q with q > x(5/11+epsilon). On the assumption of respectively the Lindelof Hypothesis and the Generalized Lindelof Hypothesis we show that these ranges can be improved to respectively H < x(2/3-epsilon) and q > x(1/3+epsilon). Furthermore we show that obtaining a bound sharp up to factors of He in the full range H < x(1-epsilon) is equivalent to the Riemann Hypothesis. These results improve on a result of Hall (Mathematika 29(1):7-17, 1982) for short intervals, and earlier results of Warlimont, Vaughan, Blomer, Nunes and Le Boudec in the case of arithmetic progressions.
Ladattava julkaisu This is an electronic reprint of the original article. |