A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Optimal covariant quantum measurements




TekijätHaapasalo Erkka, Pellonpää Juha-Pekka

KustantajaIOP PUBLISHING LTD

Julkaisuvuosi2021

JournalJournal of Physics A: Mathematical and Theoretical

Tietokannassa oleva lehden nimiJOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL

Lehden akronyymiJ PHYS A-MATH THEOR

Artikkelin numeroARTN 155304

Vuosikerta54

Numero15

Sivujen määrä50

ISSN1751-8113

eISSN1751-8121

DOIhttps://doi.org/10.1088/1751-8121/abe752

Verkko-osoitehttps://iopscience.iop.org/article/10.1088/1751-8121/abe752

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/53718746


Tiivistelmä
We discuss symmetric quantum measurements and the associated covariant observables modelled, respectively, as instruments and positive-operator-valued measures. The emphasis of this work are the optimality properties of the measurements, namely, extremality, informational completeness, and the rank-1 property which contrast the complementary class of (rank-1) projection-valued measures. The first half of this work concentrates solely on finite-outcome measurements symmetric w.r.t. finite groups where we derive exhaustive characterizations for the pointwise Kraus-operators of covariant instruments and necessary and sufficient extremality conditions using these Kraus-operators. We motivate the use of covariance methods by showing that observables covariant with respect to symmetric groups contain a family of representatives from both of the complementary optimality classes of observables and show that even a slight deviation from a rank-1 projection-valued measure can yield an extreme informationally complete rank-1 observable. The latter half of this work derives similar results for continuous measurements in (possibly) infinite dimensions. As an example we study covariant phase space instruments, their structure, and extremality properties.

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 14:38