A1 Refereed original research article in a scientific journal

The mechanism of the nucleo-sugar selection by multi-subunit RNA polymerases




AuthorsMäkinen Janne J, Shin Yeonoh, Vieras Eeva, Virta Pasi, Metsä-Ketelä Mikko, Murakami Katsuhiko S, Belogurov Georgiy A

PublisherNATURE RESEARCH

Publication year2021

JournalNature Communications

Journal name in sourceNATURE COMMUNICATIONS

Journal acronymNAT COMMUN

Article numberARTN 796

Volume12

Issue1

Number of pages13

ISSN2041-1723

eISSN2041-1723

DOIhttps://doi.org/10.1038/s41467-021-21005-w

Self-archived copy’s web addresshttps://research.utu.fi/converis/portal/detail/Publication/53664191


Abstract
RNA polymerases (RNAPs) synthesize RNA from NTPs, whereas DNA polymerases synthesize DNA from 2dNTPs. DNA polymerases select against NTPs by using steric gates to exclude the 2 ' OH, but RNAPs have to employ alternative selection strategies. In single-subunit RNAPs, a conserved Tyr residue discriminates against 2 ' dNTPs, whereas selectivity mechanisms of multi-subunit RNAPs remain hitherto unknown. Here, we show that a conserved Arg residue uses a two-pronged strategy to select against 2 ' dNTPs in multi-subunit RNAPs. The conserved Arg interacts with the 2 ' OH group to promote NTP binding, but selectively inhibits incorporation of 2 ' dNTPs by interacting with their 3 ' OH group to favor the catalytically-inert 2 ' -endo conformation of the deoxyribose moiety. This deformative action is an elegant example of an active selection against a substrate that is a substructure of the correct substrate. Our findings provide important insights into the evolutionary origins of biopolymers and the design of selective inhibitors of viral RNAPs. RNA and DNA polymerases need to discriminate efficiently against closely related nucleotide triphosphate substrates. Here, the authors show that a conserved Arg residue is the major determinant of selectivity against deoxyribonucleoside substrates by multisubunit RNA polymerases.

Downloadable publication

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 20:35