A4 Vertaisarvioitu artikkeli konferenssijulkaisussa

Predicting the Amount of GDPR Fines




TekijätRuohonen Jukka, Hjerppe Kalle

ToimittajaAndrea Tagarelli, Ester Zumpano, Aida Kamisalić Latifić, Andrea Calì

Konferenssin vakiintunut nimiCOUrT - CAiSE for Legal Documents

Julkaisuvuosi2020

JournalCEUR Workshop Proceedings

Kokoomateoksen nimiProceedings of the First International Workshop “CAiSE for Legal Documents” (COUrT 2020)

Sarjan nimiCEUR Workshop Proceedings

Vuosikerta2690

Aloitussivu3

Lopetussivu14

ISSN1613-0073

Verkko-osoitehttp://ceur-ws.org/Vol-2690/COUrT-paper1.pdf

Rinnakkaistallenteen osoitehttps://arxiv.org/abs/2003.05151


Tiivistelmä

Abstract. The General Data Protection Regulation (GDPR) was enforced in 2018. After this enforcement, many fines have already been
imposed by national data protection authorities in the European Union
(EU). This paper examines the individual GDPR articles referenced in
the enforcement decisions, as well as predicts the amount of enforcement
fines with available meta-data and text mining features extracted from
the enforcement decision documents. According to the results, articles
related to the general principles, lawfulness, and information security
have been the most frequently referenced ones. Although the amount of
fines imposed vary across the articles referenced, these three particular
articles do not stand out. Furthermore, good predictions are attainable
even with simple machine learning techniques for regression analysis. Basic meta-data (such as the articles referenced and the country of origin)
yields slightly better performance compared to the text mining features. 

Keywords: Text mining · Legal mining · Data protection · Law enforcement 


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 21:18