A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Solving a non-linear fractional convection-diffusion equation using local discontinuous Galerkin method




TekijätSafdari Hamid, Rajabzadeh Majid, Khalighi Moein

KustantajaElsevier B.V.

Julkaisuvuosi2021

JournalApplied Numerical Mathematics

Tietokannassa oleva lehden nimiApplied Numerical Mathematics

Vuosikerta165

Aloitussivu22

Lopetussivu34

Sivujen määrä13

ISSN0168-9274

eISSN1873-5460

DOIhttps://doi.org/10.1016/j.apnum.2021.02.003

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/53433184


Tiivistelmä

We propose a local discontinuous Galerkin method for solving a nonlinear convection-diffusion equation consisting of a fractional diffusion described by a fractional Laplacian operator of order , a nonlinear diffusion, and a nonlinear convection term. The algorithm is developed by the local discontinuous Galerkin method using Spline interpolations to achieve higher accuracy. In this method, we convert the main problem to a first-order system and approximate the outcome by the Galerkin method. In this study, in contrast to the direct Galerkin method using Legender polynomials, we demonstrate that the proposed method can be suitable for the general fractional convection-diffusion problem, remarkably improve stability and provide convergence order O(hk+1), when k indicates the degree of polynomials. Numerical results have illustrated the accuracy of this scheme and compare it for different conditions.



Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 20:17