A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Multibatch Cytometry Data Integration for Optimal Immunophenotyping




TekijätOgishi Masato, Yang Rui, Gruber Conor, Zhang Peng, Pelham Simon J, Spaan András N, Rosain Jérémie, Chbihi Marwa, Han Ji Eun, Rao V Koneti, Kainulainen Leena, Bustamante Jacinta, Boisson Bertrand, Bogunovic Dusan, Boisson-Dupuis Stéphanie, Casanova Jean-Laurent

KustantajaAMER ASSOC IMMUNOLOGISTS

Julkaisuvuosi2021

JournalJournal of Immunology

Tietokannassa oleva lehden nimiJOURNAL OF IMMUNOLOGY

Lehden akronyymiJ IMMUNOL

Vuosikerta206

Numero1

Aloitussivu206

Lopetussivu213

Sivujen määrä13

ISSN0022-1767

eISSN1550-6606

DOIhttps://doi.org/10.4049/jimmunol.2000854

Verkko-osoitehttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7855665/


Tiivistelmä
High-dimensional cytometry is a powerful technique for deciphering the immunopathological factors common to multiple individuals. However, rational comparisons of multiple batches of experiments performed on different occasions or at different sites are challenging because of batch effects. In this study, we describe the integration of multibatch cytometry datasets (iMUBAC), a flexible, scalable, and robust computational framework for unsupervised cell-type identification across multiple batches of highdimensional cytometry datasets, even without technical replicates. After overlaying cells from multiple healthy controls across batches, iMUBAC learns batch-specific cell-type classification boundaries and identifies aberrant immunophenotypes in patient samples from multiple batches in a unified manner. We illustrate unbiased and streamlined immunophenotyping using both public and in-house mass cytometry and spectral flow cytometry datasets. The method is available as the R package iMUBAC (https:// github.com/casanova-lab/iMUBAC).



Last updated on 2024-26-11 at 10:49