A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

The weak Harnack inequality for unbounded supersolutions of equations with generalized Orlicz growth




Julkaisun tekijät: Benyaiche Allami, Harjulehto Petteri, Hästö Peter, Karppinen Arttu

Kustantaja: ACADEMIC PRESS INC ELSEVIER SCIENCE

Julkaisuvuosi: 2021

Journal: Journal of Differential Equations

Tietokannassa oleva lehden nimi: JOURNAL OF DIFFERENTIAL EQUATIONS

Lehden akronyymi: J DIFFER EQUATIONS

Volyymi: 275

Sivujen määrä: 25

ISSN: 0022-0396

eISSN: 1090-2732

DOI: http://dx.doi.org/10.1016/j.jde.2020.11.007


Tiivistelmä
We study unbounded weak supersolutions of elliptic partial differential equations with generalized Orlicz (Musielak-Orlicz) growth. We show that they satisfy the weak Harnack inequality with optimal exponent provided that they belong to a suitable Lebesgue or Sobolev space. Furthermore, we establish the sharpness of our central assumptions. (C) 2020 Elsevier Inc. All rights reserved.

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.




Last updated on 2021-24-06 at 11:55