A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

The weak Harnack inequality for unbounded supersolutions of equations with generalized Orlicz growth




TekijätBenyaiche Allami, Harjulehto Petteri, Hästö Peter, Karppinen Arttu

KustantajaACADEMIC PRESS INC ELSEVIER SCIENCE

Julkaisuvuosi2021

JournalJournal of Differential Equations

Tietokannassa oleva lehden nimiJOURNAL OF DIFFERENTIAL EQUATIONS

Lehden akronyymiJ DIFFER EQUATIONS

Vuosikerta275

Aloitussivu790

Lopetussivu814

Sivujen määrä25

ISSN0022-0396

eISSN1090-2732

DOIhttps://doi.org/10.1016/j.jde.2020.11.007

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/52132265


Tiivistelmä
We study unbounded weak supersolutions of elliptic partial differential equations with generalized Orlicz (Musielak-Orlicz) growth. We show that they satisfy the weak Harnack inequality with optimal exponent provided that they belong to a suitable Lebesgue or Sobolev space. Furthermore, we establish the sharpness of our central assumptions. (C) 2020 Elsevier Inc. All rights reserved.

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 19:12