Vertaisarvioitu artikkeli konferenssijulkaisussa (A4)
Entity-pair embeddings for improving relation extraction in the biomedical domain
Julkaisun tekijät: Mehryary F., Moen H., Salakoski T., Ginter F.
Konferenssin vakiintunut nimi: European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning
Kustantaja: ESANN (i6doc.com)
Julkaisuvuosi: 2020
Journal: European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning
Kirjan nimi *: ESANN 2020 - Proceedings, 28th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning
Tietokannassa oleva lehden nimi: ESANN 2020 - Proceedings, 28th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning
Aloitussivu: 613
Lopetussivun numero: 618
ISBN: 978-2-87587-073-5
eISBN: 978-2-87587-074-2
Rinnakkaistallenteen osoite: https://research.utu.fi/converis/portal/detail/Publication/51293362
We introduce a new approach for training named-entity pair embeddings to improve relation extraction performance in the biomedical domain. These embeddings are trained in
an unsupervised manner, based on the principles of distributional
semantics. By adding them to neural network architectures, we show that
improved F-Scores are achieved. Our best performing neural model which
utilizes entity-pair embeddings along with a pre-trained BERT encoder, achieves an F-score of 77.19 on CHEMPROT (Chemical-Protein) relation extraction corpus, setting a new state-of-the-art result for the task.
Ladattava julkaisu This is an electronic reprint of the original article. |