A4 Refereed article in a conference publication

Four Heads are Better than Three




AuthorsSalo Ville

EditorsHector Zenil

Conference nameInternational Workshop on Cellular Automata and Discrete Complex Systems

PublisherSpringer Science and Business Media Deutschland GmbH

Publication year2020

JournalLecture Notes in Computer Science

Book title Cellular Automata and Discrete Complex Systems 26th IFIP WG 1.5 International Workshop, AUTOMATA 2020, Stockholm, Sweden, August 10–12, 2020, Proceedings

Journal name in sourceLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Series titleLecture Notes in Computer Science

Volume12286

First page 111

Last page125

ISBN978-3-030-61587-1

eISBN978-3-030-61588-8

ISSN0302-9743

DOIhttps://doi.org/10.1007/978-3-030-61588-8_9

Self-archived copy’s web addresshttps://arxiv.org/abs/2003.05706


Abstract

We construct recursively-presented finitely-generated torsion groups which have bounded torsion and whose word problem is conjunctive equivalent (in particular positive and Turing equivalent) to a given recursively enumerable set. These groups can be interpreted as groups of finite state machines or as subgroups of topological full groups, on effective subshifts over other torsion groups. We define a recursion-theoretic property of a set of natural numbers, called impredictability. It roughly states that a Turing machine can enumerate numbers such that every Turing machine occasionally incorrectly guesses (by either halting or not) whether they are in the set, even given an oracle for a prefix of the set. We prove that impredictable recursively enumerable sets exist. Combining these constructions and slightly adapting a result of [Salo and Törmä, 2017], we obtain that four-headed group-walking finite-state automata can define strictly more subshifts than three-headed automata on a group containing a copy of the integers, confirming a conjecture of [Salo and Törmä, 2017]. These are the first examples of groups where four heads are better than three, and they show the maximal height of a finite head hierarchy is indeed four.



Last updated on 2024-26-11 at 23:41