A4 Vertaisarvioitu artikkeli konferenssijulkaisussa

Complexity of Generic Limit Sets of Cellular Automata




TekijätTörmä Ilkka

ToimittajaHector Zenil

Konferenssin vakiintunut nimiInternational Workshop on Cellular Automata and Discrete Complex Systems

KustantajaSpringer Science and Business Media Deutschland GmbH

Julkaisuvuosi2020

JournalLecture Notes in Computer Science

Kokoomateoksen nimiCellular Automata and Discrete Complex Systems 26th IFIP WG 1.5 International Workshop, AUTOMATA 2020, Stockholm, Sweden, August 10–12, 2020, Proceedings

Tietokannassa oleva lehden nimiLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Sarjan nimiLecture Notes in Computer Science

Vuosikerta12286

Aloitussivu126

Lopetussivu138

ISBN978-3-030-61587-1

eISBN978-3-030-61588-8

ISSN0302-9743

DOIhttps://doi.org/10.1007/978-3-030-61588-8_10

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/51158147


Tiivistelmä

The generic limit set of a topological dynamical system is the smallest closed subset of the phase space that has a comeager realm of attraction. It intuitively captures the asymptotic dynamics of almost all initial conditions. It was defined by Milnor and studied in the context of cellular automata, whose generic limit sets are subshifts, by Djenaoui and Guillon. In this article we study the structural and computational restrictions that apply to generic limit sets of cellular automata. As our main result, we show that the language of a generic limit set can be at most Σ03-hard, and lower in various special cases. We also prove a structural restriction on generic limit sets with a global period. 


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 12:18