A1 Refereed original research article in a scientific journal

Plasma metabolites associated with exposure to perfluoroalkyl substances and risk of type 2 diabetes - A nested case-control study




AuthorsSchillemans Tessa, Shi Lin, Donat-Vargas Carolina, Hanhineva Kati, Tornevi Andreas, Johansson Ingegerd, Koponen Jani, Kiviranta Hannu, Rolandsson Olov, Bergdahl Ingvar A, Landberg Rikard, Åkesson Agneta, Brunius Carl

PublisherPERGAMON-ELSEVIER SCIENCE LTD

Publication year2021

JournalEnvironment International

Journal name in sourceENVIRONMENT INTERNATIONAL

Journal acronymENVIRON INT

Article numberARTN 106180

Volume146

Number of pages10

ISSN0160-4120

eISSN1873-6750

DOIhttps://doi.org/10.1016/j.envint.2020.106180

Self-archived copy’s web addresshttps://research.utu.fi/converis/portal/detail/Publication/51150369


Abstract
Perfluoroalkyl substances (PFAS) are widespread persistent environmental pollutants. There is evidence that PFAS induce metabolic perturbations in humans, but underlying mechanisms are still unknown. In this exploratory study, we investigated PFAS-related plasma metabolites for their associations with type 2 diabetes (T2D) to gain potential mechanistic insight in these perturbations.We used untargeted LC-MS metabolomics to find metabolites related to PFAS exposures in a case-control study on T2D (n = 187 matched pairs) nested within the Vasterbotten Intervention Programme cohort. Following principal component analysis (PCA), six PFAS measured in plasma appeared in two groups: 1) perfluorononanoic acid, perfluorodecanoic acid and perfluoroundecanoic acid and 2) perfluorohexane sulfonic acid, perfluorooctane sulfonic acid and perfluorooctanoic acid. Using a random forest algorithm, we discovered metabolite features associated with individual PFAS and PFAS exposure groups which were subsequently investigated for associations with risk of T2D.PFAS levels correlated with 171 metabolite features (0.16 <= vertical bar r vertical bar <= 0.37, false discovery rate (FDR) adjusted p < 0.05). Out of these, 35 associated with T2D (p < 0.05), with 7 remaining after multiple testing adjustment (FDR < 0.05). PCA of the 35 PFAS- and T2D-related metabolite features revealed two patterns, dominated by glycerophospholipids and diacylglycerols, with opposite T2D associations. The glycerophospholipids correlated positively with PFAS and associated inversely with risk for T2D (Odds Ratio (OR) per 1 standard deviation (1-SD) increase in metabolite PCA pattern score = 0.2; 95% Confidence Interval (CI) = 0.1-0.4). The diacylglycerols also correlated positively with PFAS, but they associated with increased risk for T2D (OR per 1-SD = 1.9; 95% CI = 1.3-2.7). These results suggest that PFAS associate with two groups of lipid species with opposite relations to T2D risk.

Downloadable publication

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 11:41