A4 Refereed article in a conference publication

Analytics for the assessment of computational thinking




AuthorsBilbao, J.; Bravo, E.; García, O.; Rebollar, C.; Dagienė, V.; Masiulionytė-Dagienė, V.; Jankauskienė, A.; Laakso, M.-J.; Kaarto, H.; Lehtonen, D.; Parviainen, M.; Güven, I.; Gulbahar, Y.; Öztürk, T.; Tan Yenigün, N.; Pluhár, Z.; Sarmasági, P.; Rumbus, A.; Pears, A.

EditorsGómez Chova, Luis; González Martínez, Chelo; Lees, Joanna

Conference nameInternational Technology, Education and Development Conference

Publication year2025

Journal: INTED proceedings

Book title INTED2025 Proceedings

Volume19

First page 6861

Last page6868

ISBN978-84-09-70107-0

ISSN2340-1087

eISSN2340-1079

DOIhttps://doi.org/10.21125/inted.2025.1764

Publication's open availability at the time of reportingNo Open Access

Publication channel's open availability No Open Access publication channel

Web address https://doi.org/10.21125/inted.2025.1764


Abstract

Computational thinking is a fundamental competence in contemporary education, which enables individuals to approach problems in a logical and structured manner. This new competence is not only crucial for computer science professionals, but is also applicable in various disciplines and contexts of daily life. Computational thinking is essential in education because it fosters problem-solving skills, critical thinking, and creativity. In the digital age, computational thinking is not just a technical skill, but a way of thinking that can transform the way we approach the challenges and opportunities of the modern world. Assessing this skill requires precise analytical tools and methods. Assessing computational thinking is a complex process that requires a combination of qualitative and quantitative methods. Analytical rubrics, portfolio analysis, and standardized tests are essential tools that help provide a comprehensive and accurate assessment of students’ skills in this field. In our project, we also work to assess computational thinking using Bebras-type tasks and applying data analysis. Data analysis also facilitates the continuous improvement of teaching and assessment methods. By monitoring and analysing data over time, educators can identify which strategies are most effective and make adjustments to improve learning outcomes. Furthermore, data can help develop new tools and resources for teaching computational thinking. In this article, we present the assessment instrument, Comath, a research-based instrument with two rounds of piloting in six counties with subject-matter experts and over 4500 students and 100 teachers. We use tasks related to computational thinking, and we present some of the results obtained so far.



Last updated on 21/01/2026 07:56:59 AM