A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Characterization of a quantum bus between two driven qubits




TekijätHijano, Alberto; Lyyra, Henri; Muhonen, Juha T.; Heikkilä, Tero T.

KustantajaAmerican Physical Society (APS)

Julkaisuvuosi2025

Lehti: Physical Review Research

Artikkelin numero043339

Vuosikerta7

eISSN2643-1564

DOIhttps://doi.org/10.1103/y648-4111

Julkaisun avoimuus kirjaamishetkelläAvoimesti saatavilla

Julkaisukanavan avoimuus Kokonaan avoin julkaisukanava

Verkko-osoitehttps://doi.org/10.1103/y648-4111

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/508167864


Tiivistelmä

We investigate the use of driven qubits coupled to a harmonic oscillator to implement a root iSWAP gate. By dressing the qubits through an external driving field, the qubits and the harmonic oscillator can be selectively coupled, allowing for the measurement of individual qubit states, as well as leading to effective qubit-qubit interactions. We compare the qubit readout on bare and dressed qubits, and demonstrate that when coupled to low-frequency resonators, dressed qubits provide a more robust readout than bare qubits in the presence of damping and thermal effects. Furthermore, we study the impact of various system parameters on the fidelity of the two-qubit gate, identifying an optimal range for quantum computation. Our findings guide the implementation of high-fidelity quantum gates in experimental setups, for example, those employing nanoscale mechanical resonators.


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.




Julkaisussa olevat rahoitustiedot
This work was funded by the Research Council of Finland (Projects No. 354735, No. 321416, and No. 359240) and the European Research Executive Agency (Grant Agreement No. 101202316). We acknowledge grants of computer capacity from the Finnish Grid and Cloud Infrastructure (persistent identifier urn:nbn:fi:research-infras-2016072533). This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 852428).


Last updated on