A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

qSNE: quadratic rate t-SNE optimizer with automatic parameter tuning for large datasets




TekijätHäkkinen A, Koiranen J, Casado J, Kaipio K, Lehtonen O, Petrucci E, Hynninen J, Hietanen S, Carpén O, Pasquini L, Biffoni M, Lehtonen R, Hautaniemi S

Julkaisuvuosi2020

JournalBioinformatics

Tietokannassa oleva lehden nimiBioinformatics (Oxford, England)

Lehden akronyymiBioinformatics

Vuosikerta36

Numero20

Aloitussivu5086

Lopetussivu5092

Sivujen määrä7

ISSN1367-4803

eISSN1367-4811

DOIhttps://doi.org/10.1093/bioinformatics/btaa637

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/Publication/50793942


Tiivistelmä

Motivation: Non-parametric dimensionality reduction techniques, such as t-distributed stochastic neighbor embedding (t-SNE), are the most frequently used methods in the exploratory analysis of single-cell datasets. Current implementations scale poorly to massive datasets and often require downsampling or interpolative approximations, which can leave less-frequent populations undiscovered and much information unexploited.

Results: We implemented a fast t-SNE package, qSNE, which uses a quasi-Newton optimizer, allowing quadratic convergence rate and automatic perplexity (level of detail) optimizer. Our results show that these improvements make qSNE significantly faster than regular t-SNE packages and enables full analysis of large datasets, such as mass cytometry data, without downsampling.


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 23:11