A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
Agile Workflow For Interactive Analysis Of Mass Cytometry Data
Tekijät: Casado J, Lehtonen O, Rantanen V, Kaipio K, Pasquini L, Häkkinen A, Petrucci E, Hynninen J, Hietanen S, Carpén O, Biffoni M, Färkkilä A, Hautaniemi S
Julkaisuvuosi: 2021
Journal: Bioinformatics
Tietokannassa oleva lehden nimi: Bioinformatics (Oxford, England)
Lehden akronyymi: Bioinformatics
ISSN: 1367-4803
eISSN: 1367-4811
DOI: https://doi.org/10.1093/bioinformatics/btaa946
Rinnakkaistallenteen osoite: https://research.utu.fi/converis/portal/detail/Publication/50793535
Motivation: Single-cell proteomics technologies, such as mass cytometry, have enabled characterization of cell-to-cell variation and cell populations at a single cell resolution. These large amounts of data, require dedicated, interactive tools for translating the data into knowledge.
Results: We present a comprehensive, interactive method called Cyto to streamline analysis of large-scale cytometry data. Cyto is a workflow-based open-source solution that automates the use of state-of-the-art single-cell analysis methods with interactive visualization. We show the utility of Cyto by applying it to mass cytometry data from peripheral blood and high-grade serous ovarian cancer (HGSOC) samples. Our results show that Cyto is able to reliably capture the immune cell sub-populations from peripheral blood as well as cellular compositions of unique immune- and cancer cell subpopulations in HGSOC tumor and ascites samples.
Availability: The method is available as a Docker container at https://hub.docker.com/r/anduril/cyto and the user guide and source code are available at https://bitbucket.org/anduril-dev/cyto.
Ladattava julkaisu This is an electronic reprint of the original article. |