A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Kurtosis-based projection pursuit for matrix-valued data




TekijätRadojičić, Una; Nordhausen, Klaus; Virta, Joni

KustantajaInstitute of Mathematical Statistics

Julkaisuvuosi2025

Lehti: Annals of Statistics

Vuosikerta53

Numero6

Aloitussivu2563

Lopetussivu2591

ISSN0090-5364

eISSN2168-8966

DOIhttps://doi.org/10.1214/25-AOS2555

Julkaisun avoimuus kirjaamishetkelläEi avoimesti saatavilla

Julkaisukanavan avoimuus Ei avoin julkaisukanava

Verkko-osoitehttps://doi.org/10.1214/25-aos2555

Preprintin osoitehttps://arxiv.org/abs/2109.04167


Tiivistelmä

We develop projection pursuit for data that admit a natural representation in matrix form. For projection indices, we propose extensions of the classical kurtosis and Mardia’s multivariate kurtosis. The first index estimates projections for both sides of the matrices simultaneously, while the second index finds the two projections separately. Both indices are shown to recover the optimally separating projection for two-group Gaussian mixtures in the absence of any label information. We further establish the strong consistency of the corresponding sample estimators, as well as the asymptotic normality and high-dimensional consistency for the first estimator. Simulations and real data examples on hand-written postal codes and video data are used to demonstrate the method.


Julkaisussa olevat rahoitustiedot
The work of UR was supported in whole by the Austrian Science Fund (FWF) [10.55776/I5799].
The work of KN and JV was supported by the Research Council of Finland (grants 335077, 347501, 353769 and 363261).
KN acknowledges prior affiliation with University of Jyväskylä, which supported the early stages of this work.


Last updated on