A1 Refereed original research article in a scientific journal

Carnegie Supernova Project II: The Slowest Rising Type Ia Supernova LSQ14fmg and Clues to the Origin of Super-Chandrasekhar/03fg-like Events




AuthorsE. Y. Hsiao, P. Hoeflich, C. Ashall, J. Lu, C. Contreras, C. R. Burns, M. M. Phillips, L. Galbany, J. P. Anderson, C. Baltay, E. Baron, S. Castellón, S. Davis, Wendy L. Freedman, C. Gall, C. Gonzalez, M. L. Graham, M. Hamuy, T. W.-S. Holoien, E. Karamehmetoglu, K. Krisciunas, S. Kumar, H. Kuncarayakti, N. Morrell, T. J. Moriya, P. E. Nugent, S. Perlmutter, S. E. Persson, A. L. Piro, D. Rabinowitz, M. Roth, M. Shahbandeh, B. J. Shappee, M. D. Stritzinger, N. B. Suntzeff, F. Taddia, and S. A. Uddin

PublisherIOP PUBLISHING LTD

Publication year2020

JournalAstrophysical Journal

Journal name in sourceASTROPHYSICAL JOURNAL

Journal acronymASTROPHYS J

Article numberARTN 140

Volume900

Issue2

Number of pages17

ISSN0004-637X

eISSN1538-4357

DOIhttps://doi.org/10.3847/1538-4357/abaf4c

Self-archived copy’s web addresshttps://arxiv.org/abs/2008.05614


Abstract
The Type Ia supernova (SN Ia) LSQ14fmg exhibits exaggerated properties that may help to reveal the origin of the "super-Chandrasekhar" (or 03fg-like) group. The optical spectrum is typical of a 03fg-like SN Ia, but the light curves are unlike those of any SNe Ia observed. The light curves of LSQ14fmg rise extremely slowly. At -23 rest-frame days relative toB-band maximum, LSQ14fmg is already brighter thanJandHbands, far more luminous than any 03fg-like SNe Ia with near-infrared observations. At 1 month past maximum, the optical light curves decline rapidly. The early, slow rise and flat color evolution are interpreted to result from an additional excess flux from a power source other than the radioactive decay of the synthesized Ni-56. The excess flux matches the interaction with a typical superwind of an asymptotic giant branch (AGB) star in density structure, mass-loss rate, and duration. The rapid decline starting at around 1 month pastB-band maximum may be an indication of rapid cooling by active carbon monoxide (CO) formation, which requires a low-temperature and high-density environment. These peculiarities point to an AGB progenitor near the end of its evolution and the core degenerate scenario as the likely explosion mechanism for LSQ14fmg.



Last updated on 2024-26-11 at 13:00