A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
Accelerated numerical simulations of hydrogen flames: Open-source implementation of an advanced diffusion model library in OpenFOAM
Tekijät: Haider, Ali; Morev, Ilya; Rintanen, Aleksi; Shahin, Zin; Tamadonfar, Parsa; Karimkashi, Shervin; Wehrfritz, Armin; Vuorinen, Ville
Kustantaja: Elsevier
Julkaisuvuosi: 2025
Lehti: International Journal of Hydrogen Energy
Artikkelin numero: 152115
Vuosikerta: 189
ISSN: 0360-3199
eISSN: 1879-3487
DOI: https://doi.org/10.1016/j.ijhydene.2025.152115
Julkaisun avoimuus kirjaamishetkellä: Avoimesti saatavilla
Julkaisukanavan avoimuus : Osittain avoin julkaisukanava
Verkko-osoite: https://www.sciencedirect.com/science/article/pii/S0360319925051183?via%3Dihub
Rinnakkaistallenteen osoite: https://research.utu.fi/converis/portal/detail/Publication/505761551
Here, the OpenFOAM software with the dynamic load balancer library DLBFoam is investigated for computational fluid dynamics (CFD) simulations of different hydrogen (H2) flames. The benefits of DLBFoam for hydrogen have not been thoroughly investigated in the past. To explore this, a new open-source diffusion model library FickianTransportFoam is implemented in this study. FickianTransportFoam includes species-specific constant Lewis number and mixture-averaged models with correction velocity to account for preferential diffusion. The model is first verified for one-dimensional (1D) premixed and non-premixed counterflow flames. Additionally, four hydrogen/air flames are explored: (1) two-dimensional (2D) laminar freely propagating premixed flame, (2) 2D axisymmetric laminar non-premixed jet flame, (3) three-dimensional (3D) turbulent non-premixed swirling flame, and (4) 3D turbulent premixed swirling flame. The main results and achievements regarding the implemented transport models are as follows. First, the results from 2D freely propagating flame demonstrated thermodiffusively unstable flame formation using the mixture averaged model. The analytical and numerical dispersion relationships agree well for the linear instability growth phase. Second, the model functionality is demonstrated for a laminar 2D jet case with conjugate heat transfer. Furthermore, validation and grid sensitivity studies for the 3D turbulent flames are carried out. Third, the computational benchmark for each configuration indicates a factor of ~10-100 speed-up when utilizing DLBFoam. Finally, the test cases and source codes for FickianTransportFoam are openly shared.
Ladattava julkaisu This is an electronic reprint of the original article. |
Julkaisussa olevat rahoitustiedot:
This study is financially supported by Business Finland, grant number 7578/31/2022 ‘‘HENNES’’. Ville Vuorinen would like to acknowledge the support of the COST action CYPHER CA22151. Zin Shahin acknowledges financial support from Merenkulun säätiö, Walter Ahlström säätiö, and Tekniikan Edistämissäätiö. Ali Haider acknowledges Merenkulun säätiö for financial support and Ennova Technologies for providing the meshing tool license. Parsa Tamadonfar would like to acknowledge the Research Council of Finland (grant number 332835) and the Hi-EFECTS project by Nordic Energy Research (project number 172460). Shervin Karimkashi would like to acknowledge the Research Council of Finland project Wet-HyAm (grant number 361479). We highly appreciate the computational resources provided by CSC - Finnish IT Center for Science, which enabled performing the large-scale numerical simulations of this study.