A4 Vertaisarvioitu artikkeli konferenssijulkaisussa

Investigation of Reinforcement Learning Framework by deploying robust Pose Correction strategies for Precision Navigation of Agricultural Ground Robots




TekijätLachhiramka, Sanraj; Ghosh, Kuntal; Dalal, Niraj; Sheikh Akbari, Akbar; Heikkonen, Jukka; Kanth, Rajeev

ToimittajaN/A

Konferenssin vakiintunut nimiIEEE International Conference on Imaging Systems and Techniques

Julkaisuvuosi2025

Kokoomateoksen nimi2025 IEEE International Conference on Imaging Systems and Techniques (IST)

ISBN979-8-3315-9731-3

eISBN979-8-3315-9730-6

DOIhttps://doi.org/10.1109/IST66504.2025.11268356

Julkaisun avoimuus kirjaamishetkelläEi avoimesti saatavilla

Julkaisukanavan avoimuus Ei avoin julkaisukanava

Verkko-osoitehttps://ieeexplore.ieee.org/document/11268356


Tiivistelmä

Autonomous robots are transforming the agricultural industry by integrating automation into the inspection of crops and plants. Primarily, this enhances production through periodic spatio-temporal assessments, assists in optimizing resource allocation and evaluates the effects of climate change via uninterrupted surveys. These surveys require a smart navigation strategy, such as the lawnmower pattern, where ground robots can collect high-precision images and sensory information without interruption. In this work, reinforcement learning-based frameworks are explored to enable collision-free and constrained navigation for collecting spatio-temporal data in a vineyard environment. This approach formulates a pose correction strategy integrated with visual feedback by deploying Soft Actor-Critic (SAC) and Proximal Policy Optimization (PPO) algorithms. A custom reward mechanism is introduced to constrain the robot’s pose within a ±25° threshold for every 1.5-meter longitudinal distance by optimizing the waypoint coefficient and orientation coefficient, respectively. Furthermore, this optimization restricts lateral movement to a range of 0.025–0.125 meters for SAC and 0.020–0.175 meters for PPO.


Julkaisussa olevat rahoitustiedot
TiH-IoT IIT Bombay is acknowledged for sponsoring this research work.


Last updated on 2025-04-12 at 08:34