A4 Vertaisarvioitu artikkeli konferenssijulkaisussa
Raman spectroscopy and machine learning can quantitatively asses clindamycin in liquid samples
Tekijät: Milea, Eduard C.; Alecu, Andreia; Stoica, Alice; Necula, Marian; Petre, Ion; Litescu, Simona; Paun, Mihaela
Toimittaja: Flearmoy, Jonathan
Konferenssin vakiintunut nimi: International Conference on Knowledge-Based and Intelligent Information & Engineering Systems
Julkaisuvuosi: 2025
Lehti: Procedia Computer Science
Kokoomateoksen nimi: 29th International Conference on Knowledge-Based and Intelligent Information & Engineering Systems (KES 2025)
Vuosikerta: 270
Aloitussivu: 3518
Lopetussivu: 3527
eISSN: 1877-0509
DOI: https://doi.org/10.1016/j.procs.2025.09.477
Julkaisun avoimuus kirjaamishetkellä: Avoimesti saatavilla
Julkaisukanavan avoimuus : Kokonaan avoin julkaisukanava
Verkko-osoite: https://doi.org/10.1016/j.procs.2025.09.477
Rinnakkaistallenteen osoite: https://research.utu.fi/converis/portal/detail/Publication/505713152
Raman spectroscopy offers a powerful, non-destructive tool for pharmaceutical quantification, particularly in environments where traditional techniques like HPLC are limited by throughput and sample preparation demands. However, the quantification of low-concentration compounds remains challenging due to weak Raman scattering and high background interference. This study evaluates the use of portable Raman instrumentation coupled with Support Vector Regression (SVR) to quantify clindamycin across various concentrations. Spectral preprocessing steps included Savitzky–Golay smoothing, Standard Normal Variate (SNV) normalisation, and blank subtraction (ΔSNV) to enhance analyte-specific signal fidelity. Three SVR-based models were developed using full spectra, chemically meaningful fingerprint bands, and coefficient-filtered features. Models were evaluated through grouped cross-validation, bootstrapping, and external testing on formulations prepared in different solvent matrix and derived from distinct clindamycin sources (commercial tablet vs. analytical-grade standard). The top performing model achieved R² values exceeding 0.98 with root mean squared errors below 2.85 mg/mL. Blind sample predictions, made on fully unseen data, fell within 95% confidence intervals of the true concentrations, demonstrating strong model robustness.
Ladattava julkaisu This is an electronic reprint of the original article. |
Julkaisussa olevat rahoitustiedot:
This work was supported in part by the MRID, project PNRR-I8 no 842027778, contract no 760096 and by the
Core Program within the National Research, Development and Innovation Plan 2022-2027, carried out with the support of MRID, project no. 23020101(SIA-PRO), contract no 7N/2022.