Electrospinning of Electroconductive Water-Resistant Nanofibers of PEDOT–PSS, Cellulose Nanofibrils and PEO: Fabrication, Characterization, and Cytocompatibility




Latonen Rose-Marie, Cabrera Jose Antonio Wrzosek, Lund Sara, Kosourov Sergey, Vajravel Sindhujaa, Boeva Zhanna, Wang Xiaoju, Xu Chunlin, Allahverdiyeva Yagut

PublisherACS

Washington, D.C.

2021

ACS Applied Bio Materials

4

1

483

493

2576-6422

DOIhttps://doi.org/10.1021/acsabm.0c00989

https://pubs.acs.org/doi/10.1021/acsabm.0c00989

https://research.abo.fi/fi/publications/electrospinning-of-electroconductive-water-resistant-nanofibers-o



Electrically conductive composite nanofibers were fabricated using poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate) (PEDOT–PSS) and cellulose nanofibrils (CNFs) via the electrospinning technique. Poly(ethylene oxide) (PEO) was used to assist the electrospinning process, and poly(ethylene glycol) diglycidyl ether was used to induce chemical cross-linking, enabling stability of the formed fibrous mats in water. The experimental parameters regarding the electrospinning polymer dispersion and electrospinning process were carefully studied to achieve a reproducible method to obtain bead-free nanofibrous mats with high stability after water contact, with an electrical conductivity of 13 ± 5 S m–1, thus making them suitable for bioelectrochemical applications. The morphology of the electrospun nanofibers was characterized by scanning electron microscopy, and the C/S ratio was determined with energy dispersive X-ray analysis. Cyclic voltammetric studies showed that the PEDOT–PSS/CNF/PEO composite fibers exhibited high electroactivity and high stability in water for at least two months. By infrared spectroscopy, the slightly modified fiber morphology after water contact was demonstrated to be due to dissolution of some part of the PEO in the fiber structure. The biocompatibility of the PEDOT–PSS/CNF/PEO composite fibers when used as an electroconductive substrate to immobilize microalgae and cyanobacteria in a photosynthetic bioelectrochemical cell was also demonstrated.



Last updated on 2024-26-11 at 12:08