A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Dimension estimation in a spiked covariance model using high-dimensional data augmentation




TekijätRadojičić, U; Virta, J.

KustantajaOXFORD UNIV PRESS

Julkaisuvuosi2025

Lehti: Biometrika

Artikkelin numeroasaf052

Vuosikerta112

Numero4

ISSN0006-3444

eISSN1464-3510

DOIhttps://doi.org/10.1093/biomet/asaf052

Julkaisun avoimuus kirjaamishetkelläAvoimesti saatavilla

Julkaisukanavan avoimuus Osittain avoin julkaisukanava

Verkko-osoitehttps://doi.org/10.1093/biomet/asaf052

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/505616526


Tiivistelmä
We propose a modified, high-dimensional version of a recent dimension estimation procedure that determines the dimension via the introduction of augmented noise variables into the data. Our asymptotic results show that the proposal is consistent in wide, high-dimensional scenarios, and further shed light on why the original method breaks down when the dimension of either the data or the augmentation becomes too large. Simulations and real data are used to demonstrate the superiority of the proposal to competitors both under and outside of the theoretical model.

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.




Julkaisussa olevat rahoitustiedot
The work of Virta was supported by the Research Council of Finland (335077, 347501, 353769). The work of Radojičić was funded by the Austrian Science Fund (FWF) [10.55776/I5799].


Last updated on 2025-27-11 at 12:36