A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Euclid preparation LXXIII. Spatially resolved stellar populations of local galaxies with Euclid: A proof of concept using synthetic images with the TNG50 simulation




TekijätAbdurro’uf; Tortora, C.; Baes, M.; Nersesian, A.; Kovačić, I.; Bolzonella, M.; Lançon, A.; Bisigello, L.; Annibali, F.; Bremer, M.N.; Carollo, D.; Conselice, C.J.; Enia, A.; Ferguson, A.M.N.; Ferré-Mateu, A.; Hunt, L.K.; Iodice, E.; Knapen, J.H.; Iovino, A.; Marleau, F.R.; Peletier, R.F.; Ragusa, R.; Rejkuba, M.; Robotham, A.S.G.; Román, J.; Saifollahi, T.; Salucci, P.; Scodeggio, M.; Siudek, M.; van der Wel, A.; Voggel, K.; Altieri, B.; Andreon, S.; Baccigalupi, C.; Baldi, M.; Bardelli, S.; Biviano, A.; Bonchi, A.; Bonino, D.; Branchini, E.; Brescia, M.; Brinchmann, J.; Caillat, A.; Camera, S.; Cañas-Herrera, G.; Capobianco, V.; Carbone, C.; Carretero, J.; Casas, S.; Castellano, M.; Castignani, G.; Cavuoti, S.; Chambers, K.C.; Cimatti, A.; Colodro-Conde, C.; Congedo, G.; Conversi, L.; Copin, Y.; Courbin, F.; Courtois, H.M.; Cropper, M.; Da Silva, A.; Degaudenzi, H.; De Lucia, G.; Di Giorgio, A.M.; Dinis, J.; Dole, H.; Dubath, F.; Dupac, X.; Dusini, S.; Escoffier, S.; Farina, M.; Farinelli, R.; Farrens, S.; Faustini, F.; Ferriol, S.; Finelli, F.; Fotopoulou, S.; Frailis, M.; Franceschi, E.; Fumana, M.; Galeotta, S.; Gillis, B.; Giocoli, C.; Goméz-Alvarez, P.; Gracía-Carpio, J.; Grazian, A.; Grupp, F.; Holmes, W.; Hormuth, F.; Hornstrup, A.; Hudelot, P.; Jahnke, K.; Jhabvala, M.; Keihänen, E.; Kermiche, S.; Kiessling, A.; Kilbinger, M.; Kubik, B.; Kümmel, M.; Kunz, M.; Kurki-Suonio, H.; Le Brun, A.M.C.; Ligori, S.; Lilje, P.B.; Lindholm, V.; Lloro, I.; Mainetti, G.; Maino, D.; Maiorano, E.; Mansutti, O.; Marggraf, O.; Markovič, K.; Martinelli, M.; Martinet, N.; Marulli, F.; Massey, R.; Medinaceli, E.; Mei, S.; Melchior, M.; Mellier, Y.; Meneghetti, M.; Merlin, E.; Meylan, G.; Mora, A.; Moresco, M.; Moscardini, L.; Niemi, S.-M.; Nightingale, J.W.; Padilla, C.; Paltani, S.; Pasian, F.; Pedersen, K.; Pettorino, V.; Polenta, G.; Poncet, M.; Popa, L.A.; Pozzetti, L.; Raison, F.; Renzi, A.; Rhodes, J.; Riccio, G.; Romelli, E.; Roncarelli, M.; Rossetti, E.; Saglia, R.; Sakr, Z.; Sapone, D.; Sartoris, B.; Schirmer, M.; Schneider, P.; Schrabback, T.; Secroun, A.; Sefusatti, E.; Seidel, G.; Serrano, S.; Simon, P.; Sirignano, C.; Sirri, G.; Stanco, L.; Steinwagner, J.; Tallada-Crespí, P.; Andrew Taylor, A.N.; Tereno, I.; Toft, S.; Toledo-Moreo, R.; Torradeflot, F.; Tutusaus, I.; Valenziano, L.; Väliviita, J.; Vassallo, T.; Verdoes Kleijn, G.; Veropalumbo, A.; Wang, Y.; Weller, J.; Zamorani, G.; Zucca, E.; Bozzo, E.; Burigana, C.; Calabrese, M.; Di Ferdinando, D.; Escartin Vigo, J.A.; Matthew, S.; Mauri, N.; Pöntinen, M.; Porciani, C.; Scottez, V.; Tenti, M.; Viel, M.; Wiesmann, M.; Akrami, Y.; Allevato, V.; Anselmi, S.; Archidiacono, M.; Atrio-Barandela, F.; Ballardini, M.; Bertacca, D.; Blanchard, A.; Blot, L.; Borgani, S.; Brown, M.L.; Bruton, S.; Cabanac, R.; Calabro, A.; Cappi, A.; Caro, F.; Carvalho, C.S.; Castro, T.; Cogato, F.; Contini, T.; Cooray, A.R.; Cucciati, O.; Desprez, G.; Díaz-sánchez, A.; Di Domizio, S.; Ferrari, A.G.; Ferrero, I.; Finoguenov, A.; Fontana, A.; Fornari, F.; Ganga, K.; García-Bellido, J.; Gasparetto, T.; Gaztañaga, E.; Giacomini, F.; Gianotti, F.; Gozaliasl, G.; Gregorio, A.; Guidi, M.; Gutiérrez, C.M.; Hall, A.; Hemmati, S.; Hildebrandt, H.; Hjorth, J.; Huertas-Company, M.; Jimenez Muñoz, A.; Kajava, J.J.E.; Kang, Y.; Kansal, V.; Karagiannis, D.; Kirkpatrick, C.C.; Kruk, S.; Lattanzi, M.; Lee, S.; Le Graët, J.; Legrand, L.; Lembo, M.; Lesgourgues, J.; Liaudat, T.I.; Loureiro, A.; MacÍas-Pérez, J.; Magliocchetti, M.; Mannucci, F.; Maoli, R.; Martín-Fleitas, J.; Martins, C.J.A.P.; Maurin, L.; Metcalf, R.B.; Miluzio, M.; Monaco, P.; Moretti, C.; Morgante, G.; Naidoo, K.; Walton, N.A.; Paterson, K.; Patrizii, L.; Pisani, A.; Popa, V.; Potter, D.; Risso, I.; Rocci, P.-F.; Sahlén, M.; Sarpa, E.; Schneider, A.; Sciotti, D.; Sellentin, E.; Sereno, M.; Tanidis, K.; Tao, C.; Testera, G.; Teyssier, R.; Tosi, S.; Troja, A.; Tucci, M.; Valieri, C.; Vergani, D.; Verza, G.; Vielzeuf, P.; Euclid Collaboration

KustantajaEDP Sciences

Julkaisuvuosi2025

Lehti: Astronomy and Astrophysics

Artikkelin numeroA72

Vuosikerta702

ISSN0004-6361

eISSN1432-0746

DOIhttps://doi.org/10.1051/0004-6361/202554516

Julkaisun avoimuus kirjaamishetkelläAvoimesti saatavilla

Julkaisukanavan avoimuus Kokonaan avoin julkaisukanava

Verkko-osoitehttps://doi.org/10.1051/0004-6361/202554516

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/505602677


Tiivistelmä

The European Space Agency’s Euclid mission will observe approximately 14000 deg2 of the extragalactic sky and deliver high-quality imaging of a large number of galaxies. The depth and high spatial resolution of the data will enable a detailed analysis of the stellar population properties of local galaxies through spatially resolved spectral energy distribution (SED) fitting. In this study, we test our pipeline for spatially resolved SED fitting using synthetic images of Euclid, LSST, and GALEX generated from the TNG50 simulation using the SKIRT 3D radiative transfer code. Our pipeline uses functionalities in piXedfit for processing the simulated data cubes and carrying out SED fitting. We apply our pipeline to 25 simulated galaxies at z ∼ 0 to recover their resolved stellar population properties. For each galaxy, we produce three types of data cubes: GALEX + LSST + Euclid, LSST + Euclid, and Euclid-only. We performed the SED fitting tests with two stellar population synthesis (SPS) models in a Bayesian framework. Because the age, metallicity (Z), and dust attenuation estimates are biased when applying only classical formulations of flat priors (even with the combined GALEX + LSST + Euclid data), we examined the effects of additional physically motivated priors in the forms of mass-age and mass-metallicity relations, constructed using a combination of empirical and simulated data. Stellar-mass surface densities can be recovered well using any of the three data cubes, regardless of the SPS model and prior variations. The new priors then significantly improve the measurements of mass-weighted age and Z compared to results obtained without priors, but they may play an excessive role compared to the data in determining the outcome when no ultraviolet (UV) data is available. Compared to varying the spectral extent of the data cube or including and discarding the additional priors, replacing one SPS model family with the other has little effect on the results. The spatially resolved SED fitting method is powerful for mapping the stellar population properties of many galaxies with the current abundance of high-quality imaging data. Our study re-emphasizes the gain added by including multi-wavelength data from ancillary surveys and the roles of priors in Bayesian SED fitting. With the Euclid data alone, we will be able to generate complete and deep stellar mass maps of galaxies in the local Universe (z ≲ 0.1), exploiting the telescope’s wide field, near-infrared sensitivity, and high spatial resolution.​​​​​​​


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.




Julkaisussa olevat rahoitustiedot
The Euclid Consortium acknowledges the European Space Agency and a number of agencies and institutes that have supported the development of Euclid, in particular the Agenzia Spaziale Italiana, the Austrian Forschungsförderungsgesellschaft funded through BMK, the Belgian Science Policy, the Canadian Euclid Consortium, the Deutsches Zentrum für Luft- und Raumfahrt, the DTU Space and the Niels Bohr Institute in Denmark, the French Centre National d’Etudes Spatiales, the Fundação para a Ciência e a Tecnologia, the Hungarian Academy of Sciences, the Ministerio de Ciencia, Innovación y Universidades, the National Aeronautics and Space Administration, the National Astronomical Observatory of Japan, the Netherlandse Onderzoekschool Voor Astronomie, the Norwegian Space Agency, the Research Council of Finland, the Romanian Space Agency, the State Secretariat for Education, Research, and Innovation (SERI) at the Swiss Space Office (SSO), and the United Kingdom Space Agency. A complete and detailed list is available on the Euclid web site (http://www.euclid-ec.org). Co-funded by the European Union. Views and opinions expressed are however, those of the author(s) only and do not necessarily reflect those of the European Union. Neither the European Union nor the granting authority can be held responsible for them. CT acknowledges the INAF grant 2022 LEMON. JHK acknowledges grant PID2022-136505NB-I00 funded by MCIN/AEI/10.13039/501100011033 and EU, ERDF.


Last updated on 2025-27-11 at 08:49