A4 Vertaisarvioitu artikkeli konferenssijulkaisussa

On Levenshtein’s Reconstruction Problem for Channels with Unique Insertion Error Patterns




TekijätJunnila, Ville; Laihonen, Tero K.; Lehtilä, Tuomo; Padavu Devaraj, Pavan

ToimittajaEl Gamal, Hesham; Evans, Jamie; Sadeghi, Parastoo; Shirvanimoghaddam, Mahyar

Konferenssin vakiintunut nimiIEEE Information Theory Workshop

Julkaisuvuosi2025

Lehti: Proceedings: Information Theory Workshop

Kokoomateoksen nimi2025 IEEE Information Theory Workshop (ITW)

ISBN979-8-3315-3143-0

eISBN979-8-3315-3142-3

ISSN2475-420X

eISSN2475-4218

DOIhttps://doi.org/10.1109/ITW62417.2025.11240278

Julkaisun avoimuus kirjaamishetkelläEi avoimesti saatavilla

Julkaisukanavan avoimuus Ei avoin julkaisukanava

Verkko-osoitehttps://doi.org/10.1109/itw62417.2025.11240278


Tiivistelmä

Levenshtein’s sequence reconstruction model plays an essential role in information retrieval in DNA-based storage systems. In this model, a word x∈Znq is transmitted through N noisy channels, and the goal is to recover the original word exactly, or with a small uncertainty L, using the outputs from these channels. Errors occurring in the channels usually involve substitutions, insertions or deletions. In this paper, we focus on insertion errors, which we represent using (so-called) insertion vectors. One of the main questions in this context is determining the minimum number of channels N required to recover the word either unambiguously or within a given precision L. The original formulation of Levenshtein’s reconstruction problem requires that all the outputs from the channels are distinct. However, different channels may produce the same output word even when different errors occur. In this paper, we investigate two generalized reconstruction models where the channels are allowed to produce the same output word as long as, in each channel, different errors occur (that is, the errors correspond to different insertion vectors). Our objective is to determine the number of channels N required to uniquely recover the transmitted word x under these conditions. We present several results in this direction, some of which are optimal.


Julkaisussa olevat rahoitustiedot
The authors were funded in part by the Research Council of Finland grants 338797 and 358718.


Last updated on 2025-24-11 at 11:58