A4 Vertaisarvioitu artikkeli konferenssijulkaisussa

On the Intersections of q-ary Hamming Balls




TekijätJunnila, Ville; Laihonen, Tero K.; Lehtilä, Tuomo; Padavu Devaraj, Pavan

ToimittajaEl Gamal, Hesham; Evans, Jamie; Sadeghi, Parastoo; Shirvanimoghaddam, Mahyar

Konferenssin vakiintunut nimiIEEE Information Theory Workshop

Julkaisuvuosi2025

Lehti: Proceedings: Information Theory Workshop

Kokoomateoksen nimi2025 IEEE Information Theory Workshop (ITW)

ISBN979-8-3315-3143-0

eISBN979-8-3315-3142-3

ISSN2475-420X

eISSN2475-4218

DOIhttps://doi.org/10.1109/ITW62417.2025.11240468

Julkaisun avoimuus kirjaamishetkelläEi avoimesti saatavilla

Julkaisukanavan avoimuus Ei avoin julkaisukanava

Verkko-osoitehttps://ieeexplore.ieee.org/document/11240468


Tiivistelmä

In this article, we study the cardinality of the intersection of multiple q-ary Hamming balls for q ≥ 3. The problem has previously been studied in the binary case and for two balls in the case of q ≥ 3. When each ball has radius t and they are centered at words of a set S, we present a link between the asymptotic size of the cardinality and the center of the set S. For exactly three balls, we consider the largest and smallest possible intersection sizes and possible sets S leading to them. The intersections of Hamming balls have been the focus of multiple studies recently, due to their connections to Levenshtein’s sequence reconstruction problem and DNA memory systems, where the information is stored into DNA strands. The case with q = 4 is especially important for applications related to DNA due to the four nucleotides of DNA.


Julkaisussa olevat rahoitustiedot
The authors were funded in part by the Research Council of Finland grants 338797 and 358718.


Last updated on 2025-24-11 at 11:50