A4 Vertaisarvioitu artikkeli konferenssijulkaisussa
On the Intersections of q-ary Hamming Balls
Tekijät: Junnila, Ville; Laihonen, Tero K.; Lehtilä, Tuomo; Padavu Devaraj, Pavan
Toimittaja: El Gamal, Hesham; Evans, Jamie; Sadeghi, Parastoo; Shirvanimoghaddam, Mahyar
Konferenssin vakiintunut nimi: IEEE Information Theory Workshop
Julkaisuvuosi: 2025
Lehti: Proceedings: Information Theory Workshop
Kokoomateoksen nimi: 2025 IEEE Information Theory Workshop (ITW)
ISBN: 979-8-3315-3143-0
eISBN: 979-8-3315-3142-3
ISSN: 2475-420X
eISSN: 2475-4218
DOI: https://doi.org/10.1109/ITW62417.2025.11240468
Julkaisun avoimuus kirjaamishetkellä: Ei avoimesti saatavilla
Julkaisukanavan avoimuus : Ei avoin julkaisukanava
Verkko-osoite: https://ieeexplore.ieee.org/document/11240468
In this article, we study the cardinality of the intersection of multiple q-ary Hamming balls for q ≥ 3. The problem has previously been studied in the binary case and for two balls in the case of q ≥ 3. When each ball has radius t and they are centered at words of a set S, we present a link between the asymptotic size of the cardinality and the center of the set S. For exactly three balls, we consider the largest and smallest possible intersection sizes and possible sets S leading to them. The intersections of Hamming balls have been the focus of multiple studies recently, due to their connections to Levenshtein’s sequence reconstruction problem and DNA memory systems, where the information is stored into DNA strands. The case with q = 4 is especially important for applications related to DNA due to the four nucleotides of DNA.
Julkaisussa olevat rahoitustiedot:
The authors were funded in part by the Research Council of Finland grants 338797 and 358718.