A4 Vertaisarvioitu artikkeli konferenssijulkaisussa

Generative AI Agents for Instructional Co-design: A Sequential Agent-Based Approach Using a Low-Code/No-Code Platform




TekijätTolis, Dimitrios; Mystakidis, Stylianos; Hatzilygeroudis, Ioannis; Siozopoulos, Konstantinos

ToimittajaGraf, Sabine; Markos, Angelos

Konferenssin vakiintunut nimiInternational Conference on Intelligent Tutoring Systems

KustantajaSpringer Nature Switzerland

Julkaisuvuosi2025

Lehti: Lecture Notes in Computer Science

Kokoomateoksen nimiGenerative Systems and Intelligent Tutoring Systems : 21st International Conference, ITS 2025, Alexandroupolis, Greece, June 2–6, 2025, Proceedings, Part I

Vuosikerta15723

Aloitussivu301

Lopetussivu306

ISBN978-3-031-98280-4

eISBN978-3-031-98281-1

ISSN0302-9743

eISSN1611-3349

DOIhttps://doi.org/10.1007/978-3-031-98281-1_25

Julkaisun avoimuus kirjaamishetkelläEi avoimesti saatavilla

Julkaisukanavan avoimuus Ei avoin julkaisukanava

Verkko-osoitehttps://doi.org/10.1007/978-3-031-98281-1_25


Tiivistelmä
This paper explores how a Low-Code/No-Code (LCNC) platform can be used by non-technical users, such as educators, to design and deploy a Sequential Agent-Based Generative AI System to facilitate instructional design. The system deploys an LLM-based sequential workflow of AI agents to support educators in the first three stages of the ADDIE instructional design model: Analysis, Design, and Development. It follows a co-design, Human-In-The-Loop (HITL) approach, where AI agents guide instructional designers on needs analysis, content validation and generation, while allowing user intervention. The system also explores the role of self-checking agents for fact-checking, bias detection, and instructional quality review, based on specific prompts. However, the identified potential remains theoretical, requiring empirical validation through user testing to assess usability, effectiveness, and adoption by non-IT users.



Last updated on 2025-26-11 at 07:43