A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Grasping a Handful: Sequential Multi-Object Dexterous Grasp Generation




TekijätLu, Haofei; Dong, Yifei; Weng, Zehang; Pokorny, Florian T.; Lundell, Jens; Kragic, Danica

KustantajaInstitute of Electrical and Electronics Engineers (IEEE)

Julkaisuvuosi2025

Lehti: IEEE Robotics and Automation Letters

Vuosikerta10

Numero11

Aloitussivu11880

Lopetussivu11887

ISSN2377-3766

eISSN2377-3774

DOIhttps://doi.org/10.1109/LRA.2025.3614051

Julkaisun avoimuus kirjaamishetkelläAvoimesti saatavilla

Julkaisukanavan avoimuus Osittain avoin julkaisukanava

Verkko-osoitehttps://doi.org/10.1109/lra.2025.3614051

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/504943575


Tiivistelmä
We introduce the sequential multi-object robotic grasp sampling algorithm SeqGrasp that can robustly synthesize stable grasps on diverse objects using the robotic hand’s partial Degrees of Freedom (DoF). We use SeqGrasp to construct the large-scale Allegro Hand sequential grasping dataset SeqDataset and use it for training the diffusion-based sequential grasp generator SeqDiffuser. We experimentally evaluate SeqGrasp and SeqDiffuser against the state-of-the-art non-sequential multi-object grasp generation method MultiGrasp in simulation and on a real robot. The experimental results demonstrate that SeqGrasp and SeqDiffuser reach an 8.71%-43.33% higher grasp success rate than MultiGrasp. Furthermore, SeqDiffuser is approximately 1000 times faster at generating grasps than SeqGrasp and MultiGrasp. Project page: https://yulihn.github.io/SeqGrasp/.

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.




Julkaisussa olevat rahoitustiedot
This work was supported in part by Swedish Research Council, in part by Knut and Alice Wallenberg Foundation, and in part by the European Research Council under Grant ERC-BIRD-884807.


Last updated on